
 Apogee Instruments Software Specification

1

Apogee Instruments
COM (ActiveX)

API Specification

Supporting Alta
®
 and Ascent

®
 Camera Platforms

(Ethernet and USB Interfaces)

Specification Version 1.4_PRELIM

Revision Date: April, 2007

 Apogee Instruments Software Specification

2

Disclaimer

Apogee Instruments Inc. assumes no liability for the use of the information contained in this document or
the software which it describes. The user assumes all risks. There is no warranty of fitness for a particular
purpose, either express or implied.

The information contained in this document is assumed to be correct, but in no event shall Apogee
Instruments Inc. be held responsible for typographical errors or changes in the software not reflected in
this document.

The specifications contained in this document are subject to change without notice.

Support

The Apogee Alta

®
 and Ascent

®
Camera Control development specification is provided as a courtesy to our

customers, and comes without warranty of fitness for any purpose or application, either express or
implied. The user assumes all risk for the use of the information contained in this document and the
software it describes.

Copyright © 2003-2007 Apogee Instruments, Inc.
All rights reserved.

Alta and Ascent are registered trademarks of Apogee Instruments, Inc.

All other trademarks mentioned in this document are the property of their respective owners, and are
used herein solely for informational purposes only.

Apogee Instruments, Inc.
1020 Sundown Way Suite 150
Roseville, CA 95661

(916) 218-7450
(916) 218-7451 (Fax)

 Apogee Instruments Software Specification

3

Revision History

Document Version First Applicable

Driver Version

Detail

1.0 2.0.0 Initial Version

1.1 2.0.42  API Change: Added Close() method

 API Change: Added ExternalShutter property

 API Change: Added Apn_Status_ConnectionError as a return

value for the ImagingStatus property

 API Change: Deprecated Apn_CameraMode_ExternalShutter

as a valid option for the CameraMode property

 API Update: FanMode property now defaults to

Apn_FanMode_Low (previously was Apn_FanMode_Medium)

 API Update: Noted that the default value for the

IoPortDirection property, after initialization, is 0x0

 Added “Introduction” section

 Added “Image Geometry” section

 Added “I/O Port Usage” section

 Added “Application Notes” section

 Revised C++ sample code

 Added VB.NET sample code

 Added LabVIEW documentation and sample

1.2 2.0.44  API Update: Noted that the default value for the

SequenceDelay property, after initialization, is 327us

 API Update: Noted that the default value for the

VariableSequenceDelay property, after initialization, is TRUE

 Added “ISerialPort Methods” section

 Added “ISerialPort Properties” section

 Added serial port sample code (C++ code)

 Added sequencing sample code (C++ code)

1.3 3.1.0  API Update: For the CameraMode property, added the mode

Apn_CameraMode_Kinetics, and deprecated the

Apn_CameraMode_ExternalTrigger in favor of the new

triggering properties

 API Update: Deprecated the GetLine method and Line

property. GetImage and Image should be used in every case,

including TDI line downloads.

 API Update: Deprecated NetworkTransferMode. There is no

current plan to add this feature back to Ethernet systems.

 API Update: The DriverVersion property now is defined to

only provide the version of the Apogee.DLL driver. The new

property SystemDriverVersion should be used to determine the

low-level USB driver (AltaUsb.sys) version number.

 API Update: Default value for TDIRate after initialization is

0.100s

 API Update: Default value for ShutterStrobePeriod after

initialization is 0.001s

 API Update: Default value for ShutterStrobePosition after

initialization is 0.001s

 API Update: The FastSequence property cannot be used at the

same time as the TriggerNormalEach property

 Apogee Instruments Software Specification

4

 API Change: Added CameraSerialNumber property

 API Change: Added ContinuousImaging property

 API Change: Added DisableFlushCommands property

 API Change: Added DisablePostExposeFlushing property

 API Change: Added DualReadout property

 API Change: Added FlushBinningV property

 API Change: Added InterlineCCD property

 API Change: Added KineticsSectionHeight property

 API Change: Added KineticsSections property

 API Change: Added KineticsShiftInterval property

 API Change: Added OffsetTwelveBit property

 API Change: Added SequenceBulkDownload property

 API Change: Added ShutterCloseDelay property

 API Change: Added SystemDriverVersion property

 API Change: Added TDIBinningV property

 API Change: Added TriggerNormalEach property

 API Change: Added TriggerNormalGroup property

 API Change: Added TriggerTdiKineticsEach property

 API Change: Added TriggerTdiKineticsGroup property

 API Change: Added Usb8051FirmwareRev property

 API Change: Added UsbDeviceId property

 API Change: Added UsbProductId property

1.4 3.1.5  Updated entire document to make text less specific to the Alta

line, and added information regarding Ascent support

 API Update: The ShowIoDialog method has been updated to

support the Ascent I/O port

 API Update: The ShowLedDialog method now displays

“Apogee LED Selection” in the title bar instead of “Apogee

Alta LED Selection”. LED selection options have been

updated for Ascent.

 API Update: The ShowTempDialog method now displays

“Apogee Temperture Control” in the title bar instead of

“Apogee Alta Temperature Control”. Fan speed in this dialog

cannot be changed on Ascent cameras.

 API Update: Revised DataBits property for Ascent

 API Update: Revised DualReadout property for Ascent

 API Update: Revised ExternalIoReadout for Ascent

 API Update: Revised IoPortAssignment for Ascent

 API Update: Revised IoPortDirection for Ascent

 API Update: Revised IoPortData for Ascent

 API Update: Revised FanMode for Ascent

 API Update: Revised GainTwelveBit for Ascent

 API Update: Revised OffsetTwelveBit for Ascent

 API Update: Revised TempHeatsink for Ascent

 API Change: Added GuideAbort method

 API Change: Added GuideDecMinus method

 API Change: Added GuideDecPlus method

 API Change: Added GuideRAMinus method

 API Change: Added GuideRAPlus method

 API Change: Added ConnectionTest property

 API Change: Added DataAveraging property

 API Change: Added DigitizationSpeed property

 API Change: Added FilterPosition property

 Apogee Instruments Software Specification

5

 API Change: Added FilterPositioningDone property

 API Change: Added GuideActive property

 API Change: Added GuideDecMinusDuration property

 API Change: Added GuideDecPlusDuration property

 API Change: Added GuideRAMinusDuration property

 API Change: Added GuideRAPlusDuration property

 API Change: Added PlatformType property

NOTE: For Alta camera systems, many of the new features supported in driver version 3.1.0 and higher

require camera control firmware version 21 (or higher). If your camera system does not have version 21 or

higher of the firmware, please contact Apogee Instruments for an update. Firmware updates are available

online at www.ccd.com.

http://www.ccd.com/

 Apogee Instruments Software Specification

6

Apogee Software Reference Documentation
Table of Contents

1 INTRODUCTION ... 7

2 IMAGE GEOMETRY... 8

3 ICAMERA2 OVERVIEW BY CAMERA PLATFORM ... 9

4 ICAMERA2 METHODS .. 12

5 ICAMERA2 HELPER-DIALOG METHODS .. 19

6 ICAMERA2 PROPERTIES ... 23

7 ICAMDISCOVER ... 36

8 I/O PORT USAGE ... 39

9 SERIAL PORT USAGE (ALTA SYSTEMS) ... 44

10 ISERIALPORT METHODS (ALTA SYSTEMS) .. 45

11 ISERIALPORT PROPERTIES (ALTA SYSTEMS) ... 47

12 SEQUENCES ... 48

13 CONTINUOUS IMAGING .. 52

14 HARDWARE TRIGGERING ... 53

15 TIME DELAYED INTEGRATION (TDI) MODE .. 57

16 KINETICS MODE .. 59

17 EXAMPLES ... 61

18 APPLICATION NOTES .. 69

 Apogee Instruments Software Specification

7

Apogee Software Reference Documentation

1 Introduction

Thank you for your interest in developing applications for the Apogee Alta and Ascent lines of scientific
imaging systems!

The Apogee camera drivers provide access to all camera functions through a straightforward
ActiveX/COM API. ActiveX/COM components are accessible from virtually any Windows programming or
scripting language. The driver resides in the file Apogee.dll, which can be installed anywhere on the
user’s system. Note, though, that the DLL must be registered with the operating system (this is done by
software installers automatically, or can be done manually via the command line interface). Please see
the installation files for appropriate instruction on hardware and software installation of the Apogee
system.

Apogee Alta and Ascent systems are controlled through an interface referred to as the ICamera2
interface. If you have previously developed software for Apogee’s AP/KX line of camera systems, you
may already be familiar with the previous ICamera interface for control of Apogee cameras. While
ICamera code is not forward-compatible with the advanced feature set of the Alta and Ascent lines,
developers will find many of the concepts familiar, and porting code from ICamera to ICamera2 should be
relatively straightforward.

The ICamera2 interface is composed of various Methods and Properties. Generally speaking, a COM
Method is a call made by the application to perform some action, such as taking an exposure. A COM
Property is information obtained by the application about the camera system, such as the camera model
name.

The ICamera2 interface is designed as a flexible and lightweight layer to access the underlying camera
hardware. This approach emphasizes providing the building blocks for application developers, while
leaving the process of putting those blocks together to the application writer. It is the simplest interface to
fit the widest possible range of applications.

The following diagram shows the various software components and how they fit together:

The remainder of this document will detail the various interfaces supported by the camera systems.

Camera Control Application

Apogee Camera Firmware/Hardware

ICamera2 COM Interface

(Apogee.DLL)

Ethernet

Communication Layer

(Apogee.DLL)

USB 2.0 Interface

Communication Layer

(Apogee.DLL/AltaUsb.SYS)

Apogee ICamera2 Software Stack

 Apogee Instruments Software Specification

8

2 Image Geometry

The Apogee Alta and Ascent camera systems require specific geometry parameters in order to properly
define a region of interest (ROI) that will contain the digitized image data. The variables that control how
the geometry of a particular image is set up are specified in the ActiveX/COM properties later in this
document.

The sensor pixels are divided into three regions:

1. Physical CCD Device. This is the actual, complete size of each and every pixel on the CCD
sensor. Per manufacturer specs, only a portion of these pixels are available for actually imaging
operations.

2. Available Imaging Area. This is the normal, maximum imaging area of the sensor. This area
does not include any overscan pixels, since, by definition, overscan pixels are dark reference
pixels and not for typical imaging situations.

3. Region of Interest (ROI). This area comprises the actual pixels which will be returned to the
application as image data. It may be sized from 1 single pixel to the size of the entire Available
Imaging Area, plus the Overscan Columns.

The following diagram may be useful in visualizing the image geometry.

Physical CCD Device

Available Imaging Area

Region of Interest

ImagingColumns
Overscan

Columns

Im
a

g
in

g
R

o
w

s

RoiStartX

RoiStartY

PhysicalColumns

P
h

y
si

c
a

lR
o

w
s

RoiPixelsH

RoiPixelsV

Physical CCD Device

Available Imaging Area

Region of Interest

ImagingColumns
Overscan

Columns

Im
a

g
in

g
R

o
w

s

RoiStartX

RoiStartY

PhysicalColumns

P
h

y
si

c
a

lR
o

w
s

RoiPixelsH

RoiPixelsV

 Apogee Instruments Software Specification

9

3 ICamera2 Overview by Camera Platform

The following table (organized alphabetically) outlines all of the properties and methods available through
the ICamera2 interface, and camera platform support. In general, methods are generally ―action oriented‖
events, while properties usually relate to controlling specific camera settings or features.

3.1 Methods

Method Description Alta Ascent

Close Close connection to camera X X

Expose Begin the imaging process X X

GuideAbort Stop all guiding/relay operations X

GuideDecMinus Activate the Dec- guiding relay X

GuideDecPlus Activate the Dec+ guiding relay X

GuideRAMinus Activate the RA- guiding relay X

GuideRAPlus Activate the RA+ guiding relay X

GetImage Downloads image data from the camera X X

GetLine Downloads a single line of image data from the camera Deprecated

Init Connects to the camera and initializes to a known state X X

PauseTimer Pause the camera exposure timer X X

ResetSystem Reset the camera system X X

ShowIoDialog Display the I/O port helper dialog box X X

ShowLedDialog Display the LED control helper dialog box X X

ShowTempDialog Display the temperature control helper dialog box X X

StopExposure Stop an exposure that is already in progress X X

3.2 Properties

Property Description Alta Ascent

AvailableMemory Amount of local memory storage in camera X X

CameraInterface Camera to computer connection interface X X

CameraMode Controls specific type of imaging performed X X

CameraModel Apogee model number of the camera X X

CameraRegister Access specific internal camera registers directly X X

CameraSerialNumber OEM serial number X X

Color Specifies whether the sensor is a color sensor X X

ConnectionTest Verifies connection to the camera X X

ContinuousImaging Special mode of a non-stop series of exposures X X

ConvertShortToLong Converts pixel data from 2 bytes to 4 bytes X X

CoolerControl Camera supports cooling X X

CoolerBackoffPoint Programmed delta if set point cannot be reached X X

CoolerDrive Drive level applied to the cooler X X

CoolerEnable Enables cooler operation X X

 Apogee Instruments Software Specification

10

CoolerRegulated Camera supports regulated cooling X X

CoolerSetPoint Desired temperature setting in degrees Celsius X X

CoolerStatus Current status of the cooler control unit X X

DataAveraging Average two samples/pixel out of the A/D converter X

DataBits Specifies 12 or 16 bit per pixel image resolution X

DigitizeOverscan Enables digitization of the overscan area X X

DigitizationSpeed Programmable speed of the A/D converter X

DisableFlushCommands Disables subsequent flush commands X X

DisablePostExposeFlushing Prevents the camera from flushing after exposure X X

DisableShutter Disables control of the camera’s internal shutter X X

DriverVersion Specifies the version of Apogee.DLL being used X X

DualReadout Enables two A/D units to simultaneously digitize the sensor X

ExternalIoReadout Allows an external signal to begin readout of the sensor X

ExternalShutter Allows an externally controlled shutter to begin an exposure X X

FanMode Selects the desired camera fan speed X

FastSequence Enables fast back to back exposures on interline sensors X X

FilterPosition Selects which filter on the wheel to use X

FilterPositioningDone Specifies the desired filter position was achieved X

FirmwareVersion Version number of the camera control firmware X X

FlushBinningV Vertical binning used for flushing operations X X

ForceShutterOpen Opens the camera shutter X X

GainSixteenBit Approximate 16bit gain of the camera model X X

GainTwelveBit Sets the 12bit gain of the camera model X

GuideActive Specifies whether the guider relays are active/in use X

GuideDecMinusDuration Duration of the pulse on the Dec- guider relay X

GuideDecPlusDuration Duration of the pulse on the Dec+ guider relay X

GuideRAMinusDuration Duration of the pulse on the RA- guider relay X

GuideRAPlusDuration Duration of the pulse on the RA+ guider relay X

Image Image data from an exposure, expressed as property X X

ImageCount Number of images in a sequence of images X X

ImagingColumns Number of imaging columns that the camera supports X X

ImagingRows Number of imaging rows that the camera supports X X

ImagingStatus Specifies the current operational state of the camera X X

InputVoltage Voltage level being supplied to the camera X X

InterlineCCD Specifies whether the camera sensor is an interline CCD X X

IoPortAssignment Selects how the I/O port lines will be configured X X

IoPortData Data values set to and from the I/O port lines X

IoPortDirection Selects the direction of the I/O port lines X

KineticsSectionHeight Vertical height for a section in Kinetics Mode X X

KineticsSections Number of sections in Kinetics Mode X X

KineticsShiftInterval Interval between shifting sections in Kinetics Mode X X

LedA Indicates the setting of the first LED light X X

LedB Indicates the setting of the second LED light X X

LedMode Specifies whether the LED lights are enabled for use X X

Line A single line of image data Deprecated

MaxBinningH Maximum horizontal binning supported by the camera X X

MaxBinningV Maximum vertical binning supported by the camera X X

 Apogee Instruments Software Specification

11

MaxExposure Maximum duration of a single exposure X X

MinExposure Minimum duration of a single exposure X X

NetworkTransferMode Type of transfer for sending data over the network Deprecated

OffsetTwelveBit Sets the 12bit offset of the camera model X

OptionBase Changes the image data array base index from 0 to 1 X X

OverscanColumns Number of overscan columns outside of the ROI X X

PhysicalColumns Number of actual, physical columns on the sensor X X

PhysicalRows Number of actual, physical rows on the sensor X X

PixelSizeX Width of one pixel, in microns X X

PixelSizeY Height of one pixel, in microns X X

PlatformType Specifies camera platform type (i.e., Alta or Ascent) X X

RoiBinningH Horizontal binning in the ROI area X X

RoiBinningV Vertical binning in the ROI area X X

RoiPixelsH Width of the ROI area X X

RoiPixelsV Height of the ROI area X X

RoiStartX Starting X coordinate of the ROI area X X

RoiStartY Starting Y coordinate of the ROI area X X

Sensor Name of the sensor used in the camera model X X

SensorTypeCCD Specifies if the sensor in the camera is CCD technology X X

SerialASupport
1
 Specifies if the camera supports serial port A X X

SerialBSupport
1
 Specifies if the camera supports serial port B X X

SequenceBulkDownload Transfers a series of images as a single image X X

SequenceCounter Specifies the number of images digitized in a sequence X X

SequenceDelay Interval between images in a sequence X X

ShutterAmpControl Disables CCD voltage while shutter strobe is active X X

ShutterCloseDelay Interval between end exposure and begin digitization X X

ShutterState Specifies if the camera shutter is open or closed X X

ShutterStrobePeriod Duration of the shutter strobe pulse X X

ShutterStrobePosition Delay from exposure start until shutter signal is pulsed X X

SystemDriverVersion Version information for AltaUsb.sys X X

TDIBinningV Vertical binning used in a TDI image X X

TDICounter Specifies the number of rows digitized in a TDI image X X

TDIRate Interval rate between rows in a TDI image X X

TDIRows Number of rows in a TDI image X X

TempCCD Current temperature of the CCD sensor X X

TempHeatsink Current temperature of the heatsink X

TestLedBrightness Brightness of the test LED X X

TriggerNormalEach Enables hardware triggering in normal exposures X X

TriggerNormalGroup Enables hardware triggering in normal exposures X X

TriggerTdiKineticsEach Enables hardware triggering in TDI/Kinetics exposures X X

TriggerTdiKineticsGroup Enables hardware triggering in TDI/Kinetics exposures X X

Usb8051FirmwareRev Internal USB firmware version information X X

UsbProductId USB Product ID value X X

UsbDeviceId USB Device ID value X X

VariableSequenceDelay Controls how the specified delay in a sequence is used X X

1 On Ascent, the property is supported for information purposes, though the feature is not. See property documentation for details.

 Apogee Instruments Software Specification

12

4 ICamera2 Methods

4.1 Init

4.1.1 Format:

Init([in] Apn_Interface Interface,

 [in] long CamIdOne,

 [in] long CamIdTwo,

[in] long Option)

4.1.2 Parameters:

Interface: The interface type requested by the application. Valid

values are Apn_Interface_NET, for Ethernet cameras, and

Apn_Interface_USB, for USB 2.0 camera systems.

CamIdOne: The first of three camera identifiers. For camera systems

using Apn_Interface_NET, this identifier is the camera IP address. The

IP address is written in standard little endian byte order, so an

address of 192.168.0.3 has the value 0xC0A80003. For camera systems

using the Apn_Interface_USB, this identifier is used to identifying a

particular camera, as enumerated by the operating system.

CamIdTwo: The second of three camera identifiers. For camera systems

using the Apn_Interface_NET, this identifier is the IP address port

number of the camera. For camera systems using the Apn_Interface_USB,

this identifier is not used and should be set to zero (0x0).

Option: Reserved for future use. In the future, this parameter may be

used for passing interface-specific information to the driver during

Initialization. Currently, this parameter should be set to zero (0x0).

4.1.3 Description:

The Init() method is used for initializing the Alta camera system and

loading firmware to the device.

4.2 Close

4.2.1 Format:

Close()

4.2.2 Parameters:

None.

 Apogee Instruments Software Specification

13

4.2.3 Description:

The Close() method is used to explicitly close a connection that was

opened to the camera with the Init() method.

An application cannot issue further API calls to the camera system

until another Init() operation is performed.

4.3 ResetSystem

4.3.1 Format:

ResetSystem()

4.3.2 Parameters:

None.

4.3.3 Description:

The ResetSystem() method resets the camera’s internal pixel processing

engines, and then starts the system flushing again.

This method may be used by an application to attempt to clear an error

condition from the device, instead of re-initializing the complete

system. This method is not destructive. Programmed camera settings

will remain intact after the method is called. An application using

ResetSystem() as an attempt to clear an error condition should query

status after this method is called to check the current state of the

camera.

The ResetSystem() method does not return the camera to the initial

state it was in after the Init() method was called. Applications

wishing to re-initialize the camera system to known state should call

the Init() method.

4.4 Expose

4.4.1 Format:

Expose([in] double Duration,

 [in] Boolean Light)

4.4.2 Parameters:

 Apogee Instruments Software Specification

14

Duration: Length of the exposure(s), in seconds. The valid range for

this parameter is 0.00000256s to 10994.4s

Light: Determines whether the exposure is a light or dark/bias frame.

A light frame requires this parameter to be set to “TRUE”, while a dark

frame requires this parameter to be “FALSE”.

4.4.3 Description:

The Expose() method begins the imaging process. The following types of

imaging categories are begun with this method:

1) Light (Nominal) Frames

2) Dark and Bias Frames

3) TDI Images

4) Image Sequences

5) Triggered Images

The type of exposure taken is dependent on various state variables,

which are properties of the ICamera2 interface—these include TdiMode

and TriggerMode.

4.5 PauseTimer

4.5.1 Format:

PauseTimer(Boolean PauseState)

4.5.2 Parameters:

PauseState: A state variable that controls the pausing of the exposure

timer. A value of “TRUE” will issue a command to pause the timer. A

value of “FALSE” will issue a command to unpause the timer. Multiple

calls with this parameter set consistently to either state (i.e. back-

to-back “TRUE” states) have no effect.

4.5.3 Description:

The PauseTimer() method pauses the current exposure by closing the

shutter and pausing the exposure timer.

There is no limit to the length of time that the exposure timer may be

paused.

4.6 StopExposure

4.6.1 Format:

 Apogee Instruments Software Specification

15

StopExposure(Boolean Digitize)

4.6.2 Parameters:

Digitize: A state variable that controls whether the stopped exposure

data will be digitized or discarded by the application. A value of

“TRUE” indicates that the application wishes to download the data in

the future. A value of “FALSE” indicates the application will not try

to retrieve the image data.

4.6.3 Description:

The StopExposure() method halts/stops an exposure already in progress,

and the hardware begins digitizing the image.

If Digitize is set to “TRUE”, then an application should follow a call

to the StopExposure() method with a call to retrieve the image data

(i.e. using GetImage()). The application then has the option of

discarding the image data entirely, or displaying the data from the

shortened exposure.

If Digitize is set to “FALSE”, then an application should not call

GetImage() after issuing the StopExposure() method.

If StopExposure() is called, and there is no exposure in progress, the

method has no effect.

4.7 GetImage

4.7.1 Format:

GetImage(long pImageBuffer)

4.7.2 Parameters:

pImageBuffer: Returns a pointer to 16 bit, unsigned short data located

in memory. The image data region should be allocated by the

application prior to calling this method.

4.7.3 Description:

The GetImage() method returns a pointer to a previously-allocated

region of memory (allocated by the calling application) that will be

filled with image data.

The application must take care to assure that it properly allocates the

image memory region before calling this method.

 Apogee Instruments Software Specification

16

4.8 GetLine

This method is now considered deprecated. Applications should use the
GetImage method instead. For a streaming TDI downloads, this means calling
GetImage for each individual line.

4.8.1 Format:

GetLine(long pLineBuffer)

4.8.2 Parameters:

pLineBuffer: Returns a pointer to 16 bit, unsigned short data located

in memory. The image data region should be allocated by the

application prior to calling this method.

4.8.3 Description:

The GetLine() method returns a pointer to a previously-allocated region

of memory that will be filled with line data.

The application must take care to assure that it properly allocates the

image memory region before calling this method.

This method should not be used with the Apn_Interface_NET interface

type. If it is used with this interface, it will fail.

4.9 GuideAbort

4.9.1 Format:

GuideAbort()

4.9.2 Parameters:

None.

4.9.3 Description:

The GuideAbort() method stops any current guider relay activity on any

of the relay pins (Dec-/+ and RA-/+). If an application uses this

method to stop the relays, it should use the GuideActive property to

determine when it is “safe” to use the relays again.

 Apogee Instruments Software Specification

17

4.10 GuideDecMinus

4.10.1 Format:

GuideDecMinus()

4.10.2 Parameters:

None.

4.10.3 Description:

The GuideDecMinus() method activates the Dec- guider relay, for the

period of time as specified by the GuideDecMinusDuration property.

Using this method again before the relay is free will have no impact on

the camera.

4.11 GuideDecPlus

4.11.1 Format:

GuideDecPlus()

4.11.2 Parameters:

None.

4.11.3 Description:

The GuideDecPlus() method activates the Dec+ guider relay, for the

period of time as specified by the GuideDecPlusDuration property.

Using this method again before the relay is free will have no impact on

the camera.

4.12 GuideRAMinus

4.12.1 Format:

GuideRAMinus()

4.12.2 Parameters:

None.

 Apogee Instruments Software Specification

18

4.12.3 Description:

The GuideRAMinus() method activates the RA- guider relay, for the

period of time as specified by the GuideRAMinusDuration property.

Using this method again before the relay is free will have no impact on

the camera.

4.13 GuideRAPlus

4.13.1 Format:

GuideRAPlus()

4.13.2 Parameters:

None.

4.13.3 Description:

The GuideRAPlus() method activates the RA+ guider relay, for the period

of time as specified by the GuideRAPlusDuration property. Using this

method again before the relay is free will have no impact on the

camera.

 Apogee Instruments Software Specification

19

5 ICamera2 Helper-Dialog Methods

The ICamera2 interface also includes three methods to assist application writers in getting their
applications up and running as quickly as possible. These methods invoke modal dialog boxes for
encapsulating some of the Alta and Ascent functionality. This allows application writers to concentrate on
features specific to their software, instead of creating dialog boxes to display camera features. Of course,
many application writers will choose not to use these generic dialog boxes, and any functionality in these
dialogs can also be queried through the ICamera2 properties.

5.1 ShowIoDialog

5.1.1 Format:

ShowIoDialog()

5.1.2 Parameters:

None.

5.1.3 Description:

The ShowIoDialog() method can be used to display an I/O selection dialog to

the user. The dialog box is a modal dialog. The ShowIoDialog() method is

not required to access the camera I/O features—please see the various

properties relating to camera I/O for that information. This method is

intended as a convenience for application writers who do not wish to write

their own dialog box to encapsulate this functionality. Depending on the

camera platform (Alta versus Ascent) one of two possible dialog boxes will be

displayed by the driver.

 Apogee Instruments Software Specification

20

The following graphic shows the I/O selection dialog for Alta cameras:

The following graphic shows the I/O selection dialog for Ascent cameras:

5.2 ShowLedDialog

5.2.1 Format:

ShowLedDialog()

 Apogee Instruments Software Specification

21

5.2.2 Parameters:

None.

5.2.3 Description:

The ShowLedDialog() method can be used to display an LED selection dialog to

the user. The dialog box is a modal dialog. The ShowLedDialog() method is

not required to access the camera LED features—please see the various

properties relating to camera LED control for that information. This method

is intended as a convenience for application writers who do not wish to write

their own dialog box to encapsulate this functionality.

The following graphic shows the LED selection dialog:

5.3 ShowTempDialog

5.3.1 Format:

ShowTempDialog()

5.3.2 Parameters:

None.

5.3.3 Description:

 Apogee Instruments Software Specification

22

The ShowTempDialog() method can be used to display a temperature control

dialog to the user. The dialog box is a modal dialog. The ShowTempDialog()

method is not required to access the camera temperature control features—

please see the various properties relating to camera I/O for that

information. This method is intended as a convenience for application

writers who do not wish to write their own dialog box to encapsulate this

functionality. Depending on the camera platform (Alta versus Ascent) one of

two possible dialog boxes will be displayed by the driver.

The following graphic shows the temperature control dialog for Alta cameras:

The following graphic shows the temperature control dialog for Ascent

cameras:

 Apogee Instruments Software Specification

23

6 ICamera2 Properties

The following table lists the ICamera2 properties available to applications. The properties are arranged
by functional use within the camera (i.e., functionality related to the cooler is in one place, binning
another, et cetera).

Camera Settings

Variable R/W Data Type Notes

AvailableMemory RO Long Returns the amount of available memory for storing images in
terms of kilobytes (KB).

CameraInterface RO Apn_Interface Returns the interface type supported by the camera. Valid
values are listed below.

 0x0 (Apn_Interface_NET): Ethernet interface.

 0x1 (Apn_Interface_USB): USB 2.0 interface.

CameraMode R/W Apn_CameraMode Returns/Sets the operational mode of the camera. The default
value for this variable after initialization is
Apn_CameraMode_Normal.

 0x0 (Apn_CameraMode_Normal): Specifies nominal camera
operation for exposure control. Single exposures, or sequences
of exposures, are may be initiated by software or hardware
control. Applications should note that the ContinuousImaging
property is only available in this mode.

 0x1 (Apn_CameraMode_TDI): Specifies camera operation
using time delayed integration (drift scan) mode. Used in
conjunction with TDIRows, TDIRate and TDIBinningV. The
actual TDI exposure is started with the Expose method, but the
―Duration‖ parameter of Expose is not used. This mode cannot
be used with interline sensors.

 0x2 (Apn_CameraMode_Test): Specifies that the camera
operation should be defined using simulated data for image
parameters.

 0x3 (Apn_CameraMode_ExternalTrigger): Specifies camera
operation using an external trigger to control the exposure.
While maintained for backward compatibility, this mode should
be considered deprecated. Applications should use the new
TriggerNormal* and TriggerTdiKinetics* properties to enable
and use external hardware triggering.

 0x4 (Apn_CameraMode_ExternalShutter): Specifies camera
operation using an external shutter to control the exposure.
This mode is deprecated. Applications should use the
ExternalShutter property instead. Should an application request
to use this mode, the driver will change the CameraMode
property to be Apn_CameraMode_Normal.

 0x5 (Apn_CameraMode_Kinetics): Specifies camera operation
for Kinetics Mode. In this mode, the user will optically mask all
but a portion of the CCD. This remaining section is exposed,
shifted by some number of rows, and then exposed again. The
process continues until the entire CCD surface is exposed. This
mode cannot be used with interline sensors.

CameraModel RO String Returns a camera model identifier for the device.

CameraSerialNumber RO String Returns a special OEM-specific serial number—not the serial
number assigned by Apogee Instruments for the camera

 Apogee Instruments Software Specification

24

system. This property is intended for custom OEM application
use only and the programming of specific serial numbers is
solely reserved for OEM customers of Apogee Instruments.
Cameras without an OEM serial number will display ―N/A‖ or
―Unknown‖ when this property is used.

ConnectionTest RO Boolean Tests the connection between the camera and the user’s
computer. Several short test patterns and written and then read
back from the camera. If this data is written and read back
successfully, the test is considered successful.

DataBits R/W Apn_Resolution Digitization Resolution. Valid values are listed below. The
default value for this variable after initialization is
Apn_Resolution_SixteenBit. This property cannot be changed
for Alta Ethernet systems, or for Ascent cameras.

 0x0 (Apn_Resolution_SixteenBit): Selects resolution of 16 bits
per pixel.

 0x1 (Apn_Resolution_TwelveBit): Selects resolution of 12 bits
per pixel.

DigitizationSpeed R/W Long Returns/Sets the A/D digitization speed of the camera. This
feature is not supported on Alta camera systems. Valid settings
on Ascent are listed below. Applications should program the
integer index value to select the appropriate speed. The default
value after initialization can vary by camera model.

0: 10MHz

1: 5MHz

2: 2.5MHz

3: 1.25MHz

4: 0.612MHz

5: 0.306MHz

6: 0.153MHz

7: 0.076MHz

DriverVersion RO String Version number of the camera driver. This is the version of the
Apogee.DLL. A return value of <=0 indicates that the driver
stack version could not be recognized, and should be treated as
an error code by the application. Note that the use of this
property does not require a connection to the camera system.

DataAveraging R/W Boolean Returns/Sets the ability to internally average the pixel data
within the camera before it is sent back to the user. Pixel data
from the sensor is digitized twice and then averaged. This can
be used as an additional method of noise reduction. The default
value of this variable after initialization is FALSE.

DualReadout R/W Boolean Returns/Sets dual A/D digitization capabilities with the camera
system. If a specific camera system does not support dual
digitization, this property has no effect. The Alta camera
platform does not support this property. The default value of
this variable after initialization is FALSE.

FirmwareVersion RO Long Version number of the camera control firmware.

ImagingStatus RO Apn_Status Returns the current imaging state of the camera. Error
conditions are noted by negative numbers. The
Apn_Status_Idle is a unique state that the camera should never
be in once initialization has occurred (the normal camera state
is for the camera to be flushing).

 -3: Apn_Status_ConnectionError - Error. An internal error was
generated while attempting to communicate with the camera.

 Apogee Instruments Software Specification

25

This error may occur when a connection to the camera is
attempted and failed, or if the driver detects a failure while
communicating with the camera system (for example, if a USB
connector is suddenly unplugged).

 -2: Apn_Status_DataError - Error. An internal error was
generated by the camera during image readout and the internal
FIFO was hung. Using the Reset() or Init() methods may return
the camera to a known, good state.

 -1: Apn_Status_PatternError - Error. An internal error was
generated by the camera during pixel processing. Using the
Reset() or Init() methods may return the camera to a known,
good state.

 0: Apn_Status_Idle - Idle. The camera system is completely
idle. Flushing operations have not been started. Applications
should typically never see this state after the Init() method has
been called.

 1: Apn_Status_Exposing - Exposing. An exposure is in
progress.

 2: Apn_Status_ImagingActive - Imaging Active. The camera
is reading out an image, or waiting for an image to begin. While
an image is actually being exposed, the status returned will be
Apn_Status_Exposing.

 3: Apn_Status_ImageReady - Image Ready. The camera has
completed an exposure and digitized the image data.
Applications should poll this flag before retrieving the image
data. Once the image data has been read, the camera will
return (in the nominal case) to the Apn_Status_Flushing state.

 4: Apn_Status_Flushing - Flushing. The camera system is
flushing the sensor. No other operations are in effect.

 5: Apn_Status_WaitingOnTrigger - Waiting on Trigger. The
camera is waiting for a trigger event to start an exposure.

InputVoltage RO Double Returns the operating input voltage to the camera.

MaxExposure RO Double Returns the maximum exposure duration. This is a hard value.
Exposure times sent to the ―Expose‖ method, which are greater
than MaxExposure, will be truncated to the value specified by
MaxExposure.

MinExposure RO Double Returns the suggested minimum exposure duration, based on
the camera model’s sensor type, shutter size, et cetera. As this
is a suggested duration, the actual exposure time sent to the
―Expose‖ method may be less than the value specified in
MinExposure.

NetworkTransferMode R/W Apn_NetworkMode This mode is disabled and considered deprecated. Apogee
Instruments has no current or future plans to implement UDP
downloading on Ethernet camera systems. Changing this
variable has no effect.
Used only with Ethernet camera systems. Valid values are
listed below. This variable should only be changed when the
interface of the camera is Ethernet. Modifying this variable
while controlling a USB camera has no effect. The default value
of this variable after initialization is Apn_NetworkMode_Tcp.
0x0 (Apn_NetworkMode_Tcp): Selects transfer of the image
data via TCP/IP. While the slowest of the transfer types, it can
be used over the Internet itself, and is highly reliable.
0x1 (Apn_NetworkMode_Udp): A faster transfer type for use
within lightly-loaded local area networks (LANs).

 Apogee Instruments Software Specification

26

PlatformType RO Apn_Platform Returns the overall platform type of the camera model. This
property is valid after initialization/connection with Init(). If the
Apn_Platform_Unknown identifier is detected, either initialization
has not occurred or the platform cannot be determined. This
property will return one of the following values:

0x0 (Apn_Platform_Unknown): Unknown platform type, or
initialization/connection with camera not established.

0x1 (Apn_Platform_Alta): Alta camera platform.

0x2 (Apn_Platform_Ascent): Ascent camera platform.

SerialASupport RO Boolean Returns whether the camera supports Serial Port A. Note that
Ascent cameras do not have serial ports, and so will return
FALSE if queried by this property.

SerialBSupport RO Boolean Returns whether the camera supports Serial Port B. Note that
Ascent cameras do not have serial ports, and so will return
FALSE if queried by this property.

SystemDriverVersion RO String Returns the version number of the AltaUsb.sys camera driver. If
the system driver cannot be determined on a USB system, the
property will return ―Unknown‖. This property will always return
―N/A‖ on an Ethernet system.

Usb8051FirmwareRev RO String Returns a revision code for the internal USB firmware within the
camera head. This property is mainly designed for Apogee
Instruments’ own internal diagnostic tests. This property will
always return ―N/A‖ on an Ethernet system.

UsbProductId RO Long Returns the USB Product ID (PID) associated with the camera
system. This property is mainly designed for Apogee
Instruments’ own internal diagnostic tests.

UsbDeviceId RO Long Returns the USB Device ID (DID) associated with the camera
system. This property is mainly designed for Apogee
Instruments’ own internal diagnostic tests.

Flush Settings

Variable R/W Data Type Notes

DisableFlushCommands R/W Boolean Enables/Disables any flushing command sent by the driver
(Apogee.DLL) to be recognized or unrecognized by the camera
control firmware. This property may be used with
DisablePostExposeFlushing to completely stop all flushing
operations within the camera. The default value of this variable
after initialization is FALSE.
WARNING: This is a highly specialized property designed for
very unique experiments. Applications and users will not
normally need to modify this variable from the default value.

DisablePostExposeFlushing R/W Boolean Enables/Disables the camera control firmware to/from
immediately beginning an internal flush cycle after an exposure.
This property may be used with DisableFlushCommands to
completely stop all flushing operations within the camera. The
default value of this variable after initialization is FALSE.
WARNING: This is a highly specialized property designed for
very unique experiments. Applications and users will not
normally need to modify this variable from the default value.

Shutter Settings

Variable R/W Data Type Notes

DisableShutter R/W Boolean TRUE forces shutter closed and disabled during an exposure;
FALSE allows normal operation. Overridden by the value of
ForceShutterOpen. The default value of this variable after

 Apogee Instruments Software Specification

27

initialization is FALSE.

ExternalIoReadout R/W Boolean When TRUE, the readout of the camera is no longer started by
the external shutter. Instead, a separate I/O pin is used to start
the readout. The default value of this variable after initialization
is FALSE. Note that Ascent cameras do not support starting
readout using the I/O port, so writes using this property have no
effect on those systems. Ascent cameras will always return
FALSE.

ExternalShutter R/W Boolean When TRUE, allows an external shutter to control the start of an
exposure. Note that even when using this property, an
application should still call the Expose method in order to set up
the internal state of the camera correctly. The default value of
this variable after initialization is FALSE.

ForceShutterOpen R/W Boolean TRUE forces shutter to open; FALSE allows normal shutter
operation (if shutter was previously opened with this command,
FALSE will then close the shutter). This property overrides the
DisableShutter property. The default value of this variable after
initialization is FALSE.

ShutterAmpControl R/W Boolean TRUE disables the CCD voltage while the shutter strobe is high.
The default value of this variable after initialization is FALSE.

ShutterCloseDelay R/W Double Returns/Sets the amount of time between the close of the
shutter and the beginning of the sensor readout. The default
value of this variable after initialization is camera dependent.
NOTE: This is a specialized property designed for unique
experiments. Applications and users will not normally need to
modify this variable from the default value.

ShutterState RO Boolean Returns TRUE if shutter is open; FALSE if closed.

ShutterStrobePeriod R/W Double Sets the period of the shutter strobe appearing on a pin at the
experiment interface. The minimum valid value is 45ns and
maximum value is 2.6ms (40ns/bit resolution). The default
value of this variable after initialization is 0.001s (1ms).

ShutterStrobePosition R/W Double Sets the delay from the time the exposure begins to the time the
rising edge of the shutter strobe period appears on a pin at the
experiment interface. The minimum valid value is 3.31us and
the maximum value is 167ms (2.56us/bit resolution). The
default value of this variable after initialization is 0.001s (1ms).

LED Settings

Variable R/W Data Type Notes

LedMode R/W Apn_LedMode Format of the status LED lights. Must be one of following
(Default is Apn_LedMode_EnableAll):

 0x0 (Apn_LedMode_DisableAll): Disable all LEDs

 0x1 (Apn_LedMode_DisableWhileExpose): Disable LEDs
during exposure only

 0x2 (Apn_LedMode_EnableAll): Enable LEDs at all times

LedA R/W Apn_LedState Indicates the usage of LED A, which is user-defined by the table
below. The default value of this variable after initialization is
Apn_LedState_Expose.

 0x0 (Apn_LedState_Expose): Expose

 0x1 (Apn_LedState_ImageActive): Image Active

 0x2 (Apn_LedState_Flushing): Flushing

 0x3 (Apn_LedState_ExtTriggerWaiting): Waiting for external

 Apogee Instruments Software Specification

28

trigger

 0x4 (Apn_LedState_ExtTriggerReceived): External Trigger
Received

 0x5 (Apn_LedState_ExtShutterInput): External Shutter Input

 0x6 (Apn_LedState_ExtStartReadout): External Start Readout.
Note that if this is selected on Ascent systems (where the
external start readout feature is not supported), the LED will
simply fail to ever illuminate.

 0x7 (Apn_LedState_AtTemp): At Temperature

LedB R/W Apn_LedState Indicates the usage of LED B, as defined by the user. (See
table for LedA, above.) The default value of this variable after
initialization is Apn_LedState_Expose.

TestLedBrightness R/W Double Controls the brightness/intensity level of the test LED light within
the cap of the camera head. Expressed as a percentage from
0% to 100%. The default value of this variable after initialization
is 0%.

I/O Port Settings

Variable R/W Data Type Notes

IoPortAssignment R/W Long Defines the signal usage for the I/O port. On Alta systems, the
valid range is for the 6 LSBs, 0x0 to 0x3F. On Ascent systems,
the valid range is for the 2 LSBs, 0x0 to 0x3. The default value
for this variable after initialization is 0x0. The following shows
how the I/O pins/signals are assigned on the two platforms:

 Bit 0 (I/O Signal 1):
Alta Definition: A value of zero (0) indicates that the I/O bit is
user defined according to the specified IoPortDirection. A value
of one (1) indicates that this I/O will be used as a trigger input.
Ascent Definition: A value of zero (0) indicates that this pin will
be used as a trigger input. A value of one (1) indicates that this
pin will be used as an external shutter input.

 Bit 1 (I/O Signal 2):
Alta Definition: A value of zero (0) indicates that the I/O bit is
user defined according to the specified IoPortDirection. A value
of one (1) indicates that this I/O will be used as a shutter output.
Ascent Definition: A value of zero (0) indicates that this pin will
be used as a shutter output. A value of one (1) indicates that
this pin will be used as a shutter strobe output.

 Bit 2 (I/O Signal 3):
Alta Definition: A value of zero (0) indicates that the I/O bit is
user defined according to the specified IoPortDirection. A value
of one (1) indicates that this I/O will be used as a shutter strobe
output.
Ascent Definition: Permanently set for RA- (Guider)

 Bit 3 (I/O Signal 4):
Alta Definition: A value of zero (0) indicates that the I/O bit is
user defined according to the specified IoPortDirection. A value
of one (1) indicates that this I/O will be used as an external
shutter input.
Ascent Definition: Permanently set for RA+ (Guider)

 Bit 4 (I/O Signal 5):
Alta Definition: A value of zero (0) indicates that the I/O bit is
user defined according to the specified IoPortDirection. A value
of one (1) indicates that this I/O will be used for starting readout
via an external signal.

 Apogee Instruments Software Specification

29

Ascent Definition: Permanently set for Dec+ (Guider)

 Bit 5 (I/O Signal 6):
Alta Definition: A value of zero (0) indicates that the I/O bit is
user defined according to the specified IoPortDirection. A value
of one (1) indicates that this I/O will be used for an input timer
pulse.
Ascent Definition: Permanently set for Dec- (Guider)

IoPortDirection R/W Long Defines I/O port signal selection. Valid range is for the 6 LSBs,
0x0 to 0x3F. This property defines user-selected I/O port
definitions. The I/O signals must have been marked specifically
as user defined by the IoPortAssignment property. The default
value for this variable after initialization is 0x0. Because of the
different I/O port usage on Ascent, this property is not used on
that camera platform. On Ascent systems, writes using this
property have no effect, and reads always return the value 0x0.

 Bit 0: I/O Signal 1 (0=IN and 1=OUT)

 Bit 1: I/O Signal 2 (0=IN and 1=OUT)

 Bit 2: I/O Signal 3 (0=IN and 1=OUT)

 Bit 3: I/O Signal 4 (0=IN and 1=OUT)

 Bit 4: I/O Signal 5 (0=IN and 1=OUT)

 Bit 5: I/O Signal 6 (0=IN and 1=OUT)

IoPortData R/W Long Data sent to/from the I/O port. Dependent on the I/O port
assignment and direction (IoPortAssignment/IoPortDirection).
Applications are responsible for toggling bits, i.e., if Bit 2 of the
I/O port is specified as an OUT signal, and a 0x1 is written to
this bit, it will remain 0x1 until 0x0 is written to the same bit.
Valid range of this property is for the 6 LSBs, 0x0 to 0x3F.
Because of the different I/O port usage on Ascent, this property
is not used on that camera platform. On Ascent systems, writes
using this property have no effect, and reads always return the
value 0x0.

Filter Wheel Settings

Variable R/W Data Type Notes

FilterPosition R/W Long Returns/Sets the filter position. The valid range is from 0-7.

FilterPositioningDone RO Boolean Returns TRUE when the filter position specified by the
FilterPosition property is reached/ready. Returns FALSE if the
selected filter position is not yet in place.

Cooler/Fan Settings

Variable R/W Data Type Notes

CoolerControl RO Boolean Returns TRUE if the camera supports cooling, FALSE if no
cooling is available.

CoolerRegulated RO Boolean Returns TRUE if the camera supports regulated cooling, FALSE
if regulated cooling is not available.

CoolerEnable R/W Boolean Returns/Sets the Cooler operation. A value of TRUE will enable
Cooler operation, and FALSE will turn the cooler off.

CoolerStatus RO Apn_CoolerStatus Returns the current cooler status

 0x0 (Apn_CoolerStatus_Off): Off (At or near Ambient). No
drive applied to the Cooler.

 0x1 (Apn_CoolerStatus_RampingToSetPoint): Ramp to the Set
Point specified by the CoolerSetPoint property.

 0x2 (Apn_CoolerStatus_AtSetPoint): At Set Point specified by
the CoolerSetPoint property.

 Apogee Instruments Software Specification

30

 0x3 (Apn_CoolerStatus_Revision): Controller generated temp
revision. If the temperature Set Point is revised, the system will
continue to return this status code until the next read of the
CoolerSetPoint property.

CoolerSetPoint R/W Double Returns/Sets the desired temperature in degrees Celsius. If the
Set Point cannot be reached, the Cooler will determine a new
Set Point based on the Backoff Point, and change the status to
Apn_CoolerStatus_Revision. An application should reread this
property to see the new Set Point that the system is using.
Once the application rereads this property, the status of
Apn_CoolerStatus_Revision will be cleared.

CoolerBackoffPoint R/W Double Returns/Sets the Backoff temperature of the cooler subsystem.
The Backoff Point is given in degrees Celsius. If the cooler is
unable to reach the Set Point, the Backoff Point is number of
degrees up from the lowest point reached. Used to prevent the
cooler from being constant driven with max power to an
unreachable temperature. The default value of this variable
after initialization can vary depending on camera model, but is
typically set at 2.0 degrees Celsius.

CoolerDrive RO Double Drive level applied to the temp controller. Expressed as a
percentage from 0% to 100%.

FanMode R/W Apn_FanMode Returns/Sets the current fan speed. The default value of this
variable after initialization is Apn_FanMode_Low. Because
there is no programmable fan speed on Ascent, this property is
not used on that camera platform. On Ascent systems, writes
using this property have no effect, and reads always return the
value 0x0 (Apn_FanMode_Off).

 0x0 (Apn_FanMode_Off): Off

 0x1 (Apn_FanMode_Low): Low

 0x2 (Apn_FanMode_Medium): Medium

 0x3 (Apn_FanMode_High): High

TempCCD RO Double Returns the current CCD temperature in degrees Celsius.

TempHeatsink RO Double Returns the current Heatsink temperature in degrees Celsius.
The Ascent camera platform does not support reading the
heatsink temperature, and this property will return -255 (an
obviously incorrect value) on those systems.

Geometry Settings

Variable R/W Data Type Notes

PhysicalColumns,
PhysicalRows

RO Long Returns the total number of physical columns or rows on the
CCD. These variables depend upon the particular geometry of
the sensor used within the camera.

ImagingColumns,
ImagingRows

RO Long Returns the imaging area size in terms of unbinned pixels.
These variables depend upon the particular geometry of the
sensor used within the camera.

OverscanColumns RO Long Returns the number of overscan columns in terms of unbinned
pixels. This variable depends upon the particular sensor used
within the camera.

DigitizeOverscan R/W Boolean Determines whether the overscan region will ignored or
digitized. Only valid when RoiBinningH is set to 1. The default
value for this variable after initialization is FALSE.

RoiPixelsH,
RoiPixelsV

R/W Long Returns/Sets the image/subframe size in terms of binned pixels.
The variables are indexed from one (1). When
DigitizeOverscan is FALSE, the valid range for RoiPixelsH is

 Apogee Instruments Software Specification

31

from 1 to ImagingColumns, and when DigitizeOverscan is
TRUE, the valid range for RoiPixelsH is from 1 to
ImagingColumns+OverscanColumns. The valid range for
RoiPixelsV is from 1 to ImagingRows. The default value of
RoiPixelsH after initialization is ImagingColumns, and the
default value of RoiPixelsV after initialization is ImagingRows.

RoiStartX,
RoiStartY

R/W Long Returns/Sets the subframe start position in terms of unbinned
pixels. The variables are indexed from zero (0). When
DigitizeOverscan is FALSE, the valid range for StartX is from 0
to ImagingColumns-1, and when DigitizeOverscan is TRUE, the
valid range for StartX is from 0 to
ImagingColumns+OverscanColumns-1. The valid range for
StartY is from 0 to ImagingRows-1. The default value of both
variables after initialization is 0.

Binning Parameters

Variable R/W Data Type Notes

FlushBinningV R/W Long Returns/Sets the vertical binning value used during flushing
operations. The valid range for this property is between 1 and
the corresponding value of MaxBinningV. The default value
after camera initialization is sensor-specific.
NOTE: This is a specialized property designed for unique
experiments. Applications and users will not normally need to
modify this variable from the default value.

MaxBinningH,
MaxBinningV

RO Long Returns the maximum horizontal and vertical binning factors of
the device.

RoiBinningH,
RoiBinningV

R/W Long Returns/Sets the horizontal and vertical binning parameters for
an exposure. The valid range for these properties is between 1
and the corresponding value of MaxBinningH (for RoiBinningH)
or MaxBinningV (for RoiBinningV). The default value for both
variables after initialization is 1.
Note that changing the binning values requires the application to
recalculate the RoiPixelsH and RoiPixelsV values, which are in
terms of binning pixel counts.

TDI Parameters

Variable R/W Data Type Notes

TDIBinningV R/W Long The vertical binning of a TDI image. The valid range for this
variable is between 1 and the corresponding value of
MaxBinningV. The default value for this variable after
initialization is 1. Modifying this property also changes the value
of the KineticsSectionHeight variable.

TDICounter RO Long Dynamically incrementing count during a TDI image. The final
value of TDICounter equals TDIRows. Valid range is between 1
and 65535.

TDIRate R/W Double Incremental rate between TDI rows. Range is from 5.12us to
336ms. The default value for this variable after initialization is
0.100s. Modifying this property also changes the value of the
KineticsShiftInterval variable.

TDIRows R/W Long Total number of rows in the TDI image. Range is between 1
and 65535. The default value for this variable after initialization
is 1. Modifying this property also changes the value of the
KineticsSections variable.

Kinetics Parameters

Variable R/W Data Type Notes

 Apogee Instruments Software Specification

32

KineticsSectionHeight R/W Long The vertical height for a Kinetics Mode section. Modifying this
property also changes the value of the TDIBinningV variable.
The default value for this variable after initialization is 1.

KineticsSections R/W Long The number of sections in a Kinetics Mode image. Modifying
this property also changes the value of the TDIRows variable.
The default value for this variable after initialization is 1.

KineticsShiftInterval R/W Double Incremental rate between Kinetics Mode sections. Range is
from 5.12us to 336ms. Modifying this property also changes the
value of the TDIRate variable. The default value for this
variable after initialization is 0.100s.

Triggering Parameters

Variable R/W Data Type Notes

TriggerNormalEach R/W Boolean Enables/Disables the use of an external hardware trigger when
using Apn_CameraMode_Normal in either a camera sequence
(using ImageCount) or if ContinuousImaging is being used.
When TRUE, every image in the series, after the first image, is
triggered with a hardware trigger. Should be used in
conjunction with TriggerNormalGroup if the application wants to
use a hardware trigger on every image of a series. The default
value for this variable after initialization is FALSE.
Note that this property cannot be used in conjunction with the
FastSequence property, since progressive scan is defined as
having the least possible time between exposures. However,
the FastSequence property may be used with a single trigger to
start a series of images (using TriggerNormalGroup).

TriggerNormalGroup R/W Boolean Enables/Disables the use of an external hardware trigger when
using Apn_CameraMode_Normal in either a camera sequence
(using ImageCount) or if ContinuousImaging is being used. If
this property is TRUE, and TriggerNormalEach is FALSE, the
external trigger will be used to start an entire series of
consecutive images. If this property is TRUE, and
TriggerNormalEach is TRUE, then an external hardware trigger
will be required for every image in a series. The default value
for this variable after initialization is FALSE.

TriggerTdiKineticsEach R/W Boolean Enables/Disables the use of an external hardware trigger using
Apn_CameraMode_TDI or Apn_CameraMode_Kinetics. If this
property is TRUE, every section or slice of a Kinetics Mode
image, after the first slice, is triggered with a hardware trigger.
Should be used in conjunction with TriggerTdiKineticsGroup if
the application wants to use a hardware trigger on every slice
within the image. The default value for this variable after
initialization is FALSE.

TriggerTdiKineticsGroup R/W Boolean Enables/Disables the use of an external hardware trigger using
Apn_CameraMode_TDI or Apn_CameraMode_Kinetics. If this
property is TRUE, and TriggerTdiKineticsEach is FALSE, the
external trigger will be used to start an entire kinetics mode
image that has already been set up. If this property is TRUE,
and TriggerTdiKineticsEach is TRUE, then an external hardware
trigger will be required for every slice of the kinetics image. The
default value for this variable after initialization is FALSE.

Guider/Relay Settings

Variable R/W Data Type Notes

GuideActive RO Boolean Returns TRUE if any of the guider relays is currently active, and
FALSE otherwise.

 Apogee Instruments Software Specification

33

GuideDecMinusDuration R/W Double Returns/Sets the duration for the Dec- guider relay, specified in
units of seconds. The default value for this variable after
initialization is 0.

GuideDecPlusDuration R/W Double Returns/Sets the duration for the Dec+ guider relay, specified in
units of seconds. The default value for this variable after
initialization is 0.

GuideRAMinusDuration R/W Double Returns/Sets the duration for the RA- guider relay, specified in
units of seconds. The default value for this variable after
initialization is 0.

GuideRAPlusDuration R/W Double Returns/Sets the duration for the RA+ guider relay, specified in
units of seconds. The default value for this variable after
initialization is 0.

Sequence Parameters

Variable R/W Data Type Notes

ContinuousImaging R/W Boolean Enables/Disables a continuous series of exposures until
stopped. The default value for this variable after initialization is
FALSE.

FastSequence R/W Boolean Enables/Disables very fast back to back exposures. Interline
CCDs only. (Also referred to as Ratio Mode.) The default value
for this variable after initialization is FALSE.
Note that this property cannot be used in conjunction with the
TriggerNormalEach property, since progressive scan is defined
as having the least possible time between exposures. However,
the FastSequence property may be used with a single trigger to
start a series of images (using TriggerNormalGroup).

ImageCount R/W Long Number of images in an image sequence. For single
exposures, this property is simply set to 1. Valid range is
between 1 and 65535. The default value of this variable after
initialization is 1.

SequenceBulkDownload R/W Boolean Enables/Disables how image data will be retrieved from the
camera during a sequence. Ethernet cameras treat this
property as Read Only (RO) and the return value is always
TRUE. For USB camera systems, this variable is used to
determine whether the returned data will be downloaded in bulk,
or streamed as it becomes available. By definition,
SequenceBulkDownload must be FALSE when the
ContinuousImaging property is enabled, since setting this
variable TRUE assumes that the number of images in a series
is known in advance of starting the exposure. The default value
for this variable after initialization is TRUE.

SequenceCounter RO Long Dynamically incrementing count during an image sequence.
The final value of SequenceCounter should equal ImageCount.
Valid range is between 0 and 65535.

SequenceDelay R/W Double Time delay between images of the sequence. Range is from
327us to 21.42s. Dependent on VariableSequenceDelay. The
default value of this variable after initialization is 327us.

VariableSequenceDelay R/W Boolean If TRUE, SequenceDelay is from end of last readout to binning
of next image. If FALSE, SequenceDelay is a constant time
interval from the beginning of the last exposure to the beginning
of the next exposure. The default value of this variable after
initialization is TRUE.

CCD Settings

Variable R/W Data Type Notes

 Apogee Instruments Software Specification

34

Color RO Boolean Returns TRUE is CCD sensor has color dyes, and FALSE
otherwise

GainSixteenBit RO Double Returns the 16bit gain in e-/ADU units. The 16bit gain is for
informational purposes only. It is not a programmable value. It
should be noted that 16bit gain values will have slight deviation
from camera model to camera model. The gain number given
here is a generic approximation, based on the sensor within a
particular camera model. Applications or users who wish to use
the camera gain in some meaningful way, should measure the
gain for their particular system, or use the value provided by
Apogee Instruments in the camera data sheet.

GainTwelveBit R/W Long A programmable value to select the actual gain being used by
the camera. The valid range of this property is from 0-1023.
Applications or user who wish to use this property to change the
camera gain, should experiment and test different values in
order to determine the gain for their particular camera system.
The default value for this property after initialization is camera
dependent. This property will frequently be used with the
OffsetTwelveBit property. Because there is no 12bit digitization
on Ascent, this property is not used on that camera platform.
On Ascent systems, writes using this property have no effect,
and reads always return the value 0x0.

InterlineCCD RO Boolean Returns TRUE if the sensor is an Interline CCD, FALSE
otherwise.

OffsetTwelveBit R/W Long A programmable value to select the actual offset being used by
the camera. The valid range of this property is from 0-1023.
Applications or users who wish to use this property to change
the camera offset, should experiment and test different values in
order to determine the desired offset for their particular camera
system. The default value for this property after initialization is
camera dependent. This property will frequently be used with
the GainTwelveBit property. Because there is no 12bit
digitization on Ascent, this property is not used on that camera
platform. On Ascent systems, writes using this property have
no effect, and reads always return the value 0x0.

PixelSizeX RO Double Returns the size (width) of the sensor’s pixels in micrometers.

PixelSizeY RO Double Returns the size (height) of the sensor’s pixels in micrometers.

Sensor RO String Returns the sensor model installed in the camera (I.e.
"KAF401E")

SensorTypeCCD RO Boolean Returns TRUE if the sensor is a CCD; FALSE if CMOS

Other

Variable R/W Data Type Notes

CameraRegister[Index] R/W Long Reads or writes data to the camera register specified by Index.
Applications should rarely (if ever) require use of this property.
Also note that not every camera register can be read.

Image RO Variant Returns a 2D SAFEARRAY, of type LONG (4 bytes per
element) or INTEGER (2 bytes per element), which contains the
image data. The type of data (LONG or INTEGER) returned is
controlled by the associated property of ConvertShortToLong.

Line RO Variant Returns a 1D SAFEARRAY of type LONG (4 bytes per element)
or INTEGER (2 bytes per element) which contains the image
data. The type of data (LONG or INTEGER) returned is
controlled by the associated property of ConvertShortToLong.

 Apogee Instruments Software Specification

35

This property is considered deprecated. Applications should
use the Image property instead. For streaming TDI downloads,
this will require calling Image for each line.

ConvertShortToLong R/W Boolean If TRUE, converts unsigned short (2 bytes per element) image
data to LONG (4 bytes per element) when using the Image and
Line properties. The default value of this variable after
initialization is FALSE.

OptionBase R/W Boolean Returns/Sets the array base index for the Image and Line
properties. TRUE sets the base index to 1; FALSE sets the
base index to 0. The default value of this variable after
initialization is FALSE.

 Apogee Instruments Software Specification

36

7 ICamDiscover

ICamDiscover provides a simple dialog box within the driver, to assist in the user’s camera selection. It is
a generic component designed to be quickly inserted into an application, and providing most of the
arguments to the ICamera2 Init() method.

ICamDiscover contains only a single method, ShowDialog(). This method causes a modal dialog box to
appear. The following description applies to this single method of the ICamDiscover interface.

Format:

ShowDialog(Boolean Interactive)

Parameters:

Interactive: A state variable that controls whether the displayed

dialog box is interactive or not. A value of “TRUE” indicates that the

dialog should be interactive, and the user will be able to select one

of the cameras found during the discovery process. A value of “FALSE”

indicates that the dialog box will be used only to locate cameras.

Applications will almost always set this variable to “TRUE”, and use

the user’s selection to call the ICamera2 Init() method.

Description:

The ShowDialog() method displays a dialog box that allows the user to

query cameras either directly attached to the computer (USB2) or

locally on a network (Ethernet).

The dialog has properties that may be queried or configured to provide

a more “custom” look and feel to the dialog box. See the list of

ICamDiscover properties for more information.

The current design of this dialog box is shown below. Note that this is a screenshot image of an
interactive dialog box, and was invoked using ShowDialog(TRUE).

 Apogee Instruments Software Specification

37

The ―Search‖ window shows the cameras located. The user selects which interface type should be
included in the search (USB 2.0 or Ethernet). If an Ethernet search is request, the user is also queried for
a network mask. The default mask is 192.168.0.255, meaning that any host with an address of
192.168.0.X will be located.

Properties define the default state of the dialog. The USB 2.0 and Ethernet check boxes may be checked
or unchecked before the dialog is display. In addition, the network mask may be changed as well.

ICamDiscover Settings

Variable R/W Data Type Notes

DlgTitleBarText R/W String Sets the Title Bar of the ICamDiscover dialog box. Default
value is ―Apogee Alta Camera Selection Dialog‖.

DlgCheckEthernet R/W Boolean If TRUE, sets the default state of the Ethernet check box to
be enabled (checked). FALSE disables. Setting or
unsetting the Ethernet check box will also enable or disable
the IP Address field for the network mask. The default
value is FALSE.

DlgCheckUsb R/W Boolean If TRUE, sets the default state of the USB 2.0 check box to
be enabled (checked). FALSE disables. The default value
is FALSE.

DlgNetworkMask R/W Long Returns or sets the value of the network mask field. The
default value is 0xC0A800FF, which corresponds to
192.168.0.255.

DlgShowEthernet R/W Boolean If TRUE, the Ethernet check box is displayed in the dialog
box. A setting of FALSE will hide the Ethernet check box,

 Apogee Instruments Software Specification

38

and remove it from the user interface. This could be used if
a particular application is specifically written for a particular
type of camera interface. The default value is TRUE.

DlgShowUsb R/W Boolean If TRUE, the USB check box is displayed in the dialog box.
A setting of FALSE will hide the USB check box, and
remove it from the user interface. This could be used if a
particular application is specifically written for a particular
type of camera interface. The default value is TRUE.

ValidSelection RO Boolean If TRUE, the user has pressed the ―OK‖ button, and
selected one of the cameras in the search box. If TRUE,
the values of the Selected* properties (SelectedInterface,
SelectedCamIdOne, SelectedCamIdTwo) are valid. On
creation of the interface, the default value is FALSE.

SelectedInterface RO Apn_InterfaceType If a valid selection was made, returns the interface type as
either Apn_Interface_NET or Apn_Interface_USB. Default
value is Apn_Interface_NONE.

SelectedCamIdOne RO Long If a valid selection was made, returns the first camera
identifier. For cameras of Apn_Interface_NET, this value is
the IP Address of the camera. For Apn_Interface_USB, this
value is the order in which the camera was enumerated by
the operating system, out of the number of cameras that
were detected by the operating system.

SelectedCamIdTwo RO Long If a valid selection was made, returns the second camera
identifier. For cameras of Apn_Interface_NET, this value is
the Port number of the camera. For Apn_Interface_USB,
this value is zero (0x0).

SelectedModel RO String If a valid selection was made, returns a string with the
model name of the camera. If the user did not make a valid
selection, this property will contain the string ―No Model‖.

 Apogee Instruments Software Specification

39

8 I/O Port Usage

8.1 Overview

Alta and Ascent camera systems provide an 8 pin MiniDIN connector, enabling various hardware signals
to be controlled by the device. On Alta systems, six of the eight pins are programmable, and of the
remaining two pins, one is ground and one is a +12 volt line. Each of the six pins may be programmed to
be either a specific fixed-function I/O pin, or else a general purpose and user-defined I/O pin. On Ascent
systems, two pins are programmable, and the rest are dedicated to fixed-function relays.

8.2 Hardware Description

The programmable pins of the I/O port are 3.3V, LVTTL signals.

IMPORTANT: Incoming trigger signals are not de-bounced internally within the camera system. Users
should insure a clean signal is sent to the device.

The pin out is shown in the following illustration. The numbers correspond to the I/O pin numbers,
defined in the table following the pin-out.

Alta I/O Port:

Ascent I/O Port:

Pin Description

1 LVTTL Signal 1

2 LVTTL Signal 2

3 LVTTL Signal 3

4 LVTTL Signal 4

5 LVTTL Signal 5

6 LVTTL Signal 6

7 +12 volt power from the camera head

8 Ground

Pin Description

1 LVTTL Signal 1

2 LVTTL Signal 2

3 RA- (Guider relay)

4 RA+ (Guider relay)

5 Dec+ (Guider relay)

6 Dec- (Guider relay)

7 Guider Common Ground

8 Ground

 Apogee Instruments Software Specification

40

8.3 Alta I/O Port Operation

Each LVTTL signal of the I/O Port has two modes of operation. The signal may be used as a general
purpose and user-defined I/O pin, or it may be configured to perform a predefined/fixed-function
operation. After initialization, the I/O Port defaults to having the signals set as user-defined.

The ICamera2 property, IoPortAssignment, is used to control whether each signal is set to the user-
defined or predetermined setting. For user-defined signals, the IoPortDirection property determines
whether the signal is an input or output. Please refer to the documentation for these properties for
additional details regarding their operation.

The fixed function descriptions of each pin are as follows:

Pin 1 – Trigger Input – Used to initiate triggered exposures (both single exposures and sequences) or
TDI row read operations. When the appropriate camera properties are invoked, the ICamera2 interface
object will automatically enable this pin to be used as an input for an external trigger signal. Applications
should still call the Expose method to put the camera system into a state where it is waiting for the trigger
to arrive. Triggered exposures use the duration parameter that is specified in the Expose method to
program the camera’s exposure timer. Internally, the Alta camera will automatically continue flushing the
sensor until the triggered exposure begins.

Pin 2 – Shutter Output – Enables an output signal that goes high while the shutter is open. This signal
could be used by other hardware in an experiment that needs to respond or act when the shutter is open.

Pin 3 – Shutter Strobe Output – Enables a programmable pulse, or strobe, to be output on the pin. The
duration/period and position of this strobe value is controlled by the ShutterStrobePeriod and
ShutterStrobePosition properties in the ICamera2 interface. The duration/period of the strobe can be
anywhere from 45ns to 2.6ms, in increments of 40ns. The position of the shutter strobe after an exposure
begins can be between 3.31us and 167ms, in increments of 2.56us.

The following illustration shows both a shutter output signal (Pin 2) as well as a programmable shutter
strobe (Pin 3), and their relation to one another:

Pin 4 – External Shutter Input – Allows for external control of camera exposures. When using the
―External Shutter Input‖ signal, the exposure duration is entirely controlled by the input to this pin. This
differs from a triggered exposure, where the camera’s internal exposure timer is used to control the
duration of the image. Note however, that applications should still call the Expose method in order to
properly set up the camera’s internal state variables. This signal is used in conjunction with the
ExternalShutter and ExternalIoReadout properties, as well as the ―External Readout Start‖ pin (Pin 5) to
provide two unique ways of controlling externally started exposures. Until the trigger is received,
applications will get a status of Apn_Status_WaitingOnTrigger when querying the ImagingStatus property.

Shutter Output

Signal

Shutter Strobe

Signal

Shutter

Open

Shutter

Close

ShutterStrobePosition

ShutterStrobePeriod

Shutter Output

Signal

Shutter Strobe

Signal

Shutter

Open

Shutter

Close

ShutterStrobePosition

ShutterStrobePeriod

 Apogee Instruments Software Specification

41

In the first mode, the ExternalShutter property is set to TRUE, and the rising edge of the ―External Shutter
Input‖ signal will halt flushing, open the shutter, and begin the exposure timer. A falling edge of this signal
will close the shutter and begin the readout/digitization process.

In the second mode, both the ExternalShutter and the ExternalIoReadout properties are set to TRUE, and
the ―External Readout Start‖ (Pin 5) is used to provide additional flexibility. In this second mode, a rising
edge of the ―External Shutter Input‖ pin will halt flushing, open the shutter, and begin the exposure timer.
However, when the falling edge of the signal is detected, the shutter closes but readout of the sensor
does not begin. Readout is begun by using the ―External Readout Start‖ signal. This second mode
allows the shutter to be closed as many times as desired during an externally controlled exposure.

The following C++ code shows how to use the camera’s external shutter capability:

// Query the camera for a full frame image
long ImgXSize = AltaCamera->ImagingColumns;
long ImgYSize = AltaCamera->ImagingRows;

// Allocate memory and calculate a byte count
unsigned short *pBuffer = new unsigned short[ImgXSize * ImgYSize];
unsigned long ImgSizeBytes = ImgXSize * ImgYSize * 2;

// External operations
AltaCamera->ExternalShutter = true;
AltaCamera->ExternalIoReadout = false;
AltaCamera->IoPortAssignment = 0x08;

// Even though the exposure time will not be used, still call Expose
AltaCamera->Expose(0.001, true);

// Check camera status to make sure image data is ready
while (AltaCamera->ImagingStatus != Apn_Status_ImageReady);

// Get the image data from the camera
AltaCamera->GetImage((long)pBuffer);

Pin 5 – External Readout Start – This pin is used in conjunction with the ―External Shutter Input‖ to
begin external readout/digitization of an exposure. Use of this fixed function pin requires that the
ExternalIoReadout property has also been set to TRUE. See the description above for additional details
regarding the behavior of this signal.

Developers and users should note that when this mode is enabled, the imaging sensor retains the image
data until signaled. Dark current/noise will build until the user begins the digitization process.

Pin 6 – Timer Pause Input – The signal can be used to pause the exposure timer for a particular image.
When the Alta camera detects that this input signal is high, the shutter will close and the timer will be
halted. When the pause signal transitions back to low, the timer is restarted. This signal can be used for
blanking events during an exposure.

 Apogee Instruments Software Specification

42

8.4 Ascent I/O Port Operation

Each of the first two LVTTL signals of the I/O Port has two modes of operation. The ICamera2 property,
IoPortAssignment, is used to control Pins 1 and 2. After initialization, the I/O Port defaults to being set up
for a trigger input on Pin 1 and a shutter output on Pin 2.

Please refer to the documentation of the IoPortAssignment property for additional details regarding its
operation.

The functional descriptions of each pin are as follows:

Pin 1 – Trigger Input/External Shutter In

Trigger Input: Used to initiate triggered exposures (both single exposures and sequences) or TDI row
read operations. When the appropriate camera properties are invoked, the ICamera2 interface object will
automatically enable this pin to be used as an input for an external trigger signal. Applications should still
call the Expose method to put the camera system into a state where it is waiting for the trigger to arrive.
Triggered exposures use the duration parameter that is specified in the Expose method to program the
camera’s exposure timer. Internally, the camera will automatically continue flushing the sensor until the
triggered exposure begins.

External Shutter Input: Allows for external control of camera exposures. When using the ―External
Shutter Input‖ signal, the exposure duration is entirely controlled by the input to this pin. This differs from
a triggered exposure, where the camera’s internal exposure timer is used to control the duration of the
image. Note however, that applications should still call the Expose method in order to properly set up the
camera’s internal state variables. This signal is used in conjunction with the ExternalShutter property to
control externally started exposures. Until the trigger is received, applications will get a status of
Apn_Status_WaitingOnTrigger when querying the ImagingStatus property. When the ExternalShutter
property is set to TRUE, the rising edge of the ―External Shutter Input‖ signal will halt flushing, open the
shutter, and begin the exposure timer. A falling edge of this signal will close the shutter and begin the
readout/digitization process.

The following C++ code shows how to use the camera’s external shutter capability:

// Query the camera for a full frame image
long ImgXSize = AscentCamera->ImagingColumns;
long ImgYSize = AscentCamera->ImagingRows;

// Allocate memory and calculate a byte count
unsigned short *pBuffer = new unsigned short[ImgXSize * ImgYSize];
unsigned long ImgSizeBytes = ImgXSize * ImgYSize * 2;

// External operations
AscentCamera->ExternalShutter = true;
AscentCamera->IoPortAssignment = 0x01;

// Even though the exposure time will not be used, still call Expose
AscentCamera->Expose(0.001, true);

// Check camera status to make sure image data is ready
while (AscentCamera->ImagingStatus != Apn_Status_ImageReady);

// Get the image data from the camera
AscentCamera->GetImage((long)pBuffer);

 Apogee Instruments Software Specification

43

Pin 2 – Shutter Output/Shutter Strobe Output

Shutter Output: Enables an output signal that goes high while the shutter is open. This signal could be
used by other hardware in an experiment that needs to respond or act when the shutter is open.

Shutter Strobe Output: Enables a programmable pulse, or strobe, to be output on the pin. The
duration/period and position of this strobe value is controlled by the ShutterStrobePeriod and
ShutterStrobePosition properties in the ICamera2 interface. The duration/period of the strobe can be
anywhere from 45ns to 2.6ms, in increments of 40ns. The position of the shutter strobe after an exposure
begins can be between 3.31us and 167ms, in increments of 2.56us.

The following illustration shows a shutter output signal as well as a programmable shutter strobe, and
their relationship to one another:

Pin 3 – RA- Guider Relay – Relay line for guiding operations. Used in conjunction with the
GuideRAMinus() method and the GuideRAMinusDuration property.

Pin 4 – RA+ Guider Relay – Relay line for guiding operations. Used in conjunction with the
GuideRAPlus() method and the GuideRAPlusDuration property.

Pin 5 – Dec+ Guider Relay – Relay line for guiding operations. Used in conjunction with the
GuideDecPlus() method and the GuideDecPlusDuration property.

Pin 6 – Dec- Guider Relay – Relay line for guiding operations. Used in conjunction with the
GuideDecMinus() method and the GuideDecMinusDuration property.

 Apogee Instruments Software Specification

44

9 Serial Port Usage (Alta Systems)

9.1 Overview

Alta camera systems provide two serial port connectors, enabling RS232 serial devices to be controlled
by the camera. This section details the Send, Receive, and Ground signals for serial ports A and B.
Control of the serial ports is by the various properties of the ISerialPort programming interface.

9.2 Hardware Description

The diagram below shows the positions of the two serial ports:

The following is the pin-out for each serial connector (there is no difference on the connector pin-out
between USB and Ethernet cameras):

For each connector, the signals are arranged as follows:

Pin Serial A Serial B

2 Ground Ground

4 Receive Receive

5 Transmit Transmit

Power USB LEDs Serial B Serial A I/O PortPower USB LEDs Serial B Serial A I/O Port

1 2 3 4 5 6
| | | | | |

1 2 3 4 5 6
| | | | | |

 Apogee Instruments Software Specification

45

10 ISerialPort Methods (Alta Systems)

10.1 OpenPort

10.1.1 Format:

Init([in] Apn_Interface Interface,

 [in] long CamIdOne,

 [in] long CamIdTwo,

[in] short SerialId)

10.1.2 Parameters:

Interface: The interface type requested by the application. Valid

values are Apn_Interface_NET, for Ethernet cameras, and

Apn_Interface_USB, for USB 2.0 camera systems.

CamIdOne: The first of three camera identifiers. For camera systems

using Apn_Interface_NET, this identifier is the camera IP address. The

IP address is written in standard little endian byte order, so an

address of 192.168.0.3 has the value 0xC0A80003. For camera systems

using the Apn_Interface_USB, this identifier is used to identifying a

particular camera, as enumerated by the operating system.

CamIdTwo: The second of three camera identifiers. For camera systems

using the Apn_Interface_NET, this identifier is the IP address port

number of the camera serial port. For camera systems using the

Apn_Interface_USB, this identifier is not used and should be set to

zero (0x0).

SerialId: The identifier of the particular serial port to open on the

camera system. Serial Port A is denoted as 0x0, and Serial Port B is

denoted as 0x1.

10.1.3 Description:

The OpenPort() method is used for initializing a particular serial port

of the Alta camera.

10.2 ClosePort

10.2.1 Format:

ClosePort()

10.2.2 Parameters:

 Apogee Instruments Software Specification

46

None.

10.2.3 Description:

The ClosePort() method is used to explicitly close a connection to a

serial port that was opened with the OpenPort() method.

An application cannot issue further API calls to the camera system

until another OpenPort() operation is performed.

 Apogee Instruments Software Specification

47

11 ISerialPort Properties (Alta Systems)

Serial Port Settings

Variable R/W Data Type Notes

BaudRate R/W Long Returns/Sets the baud rate of the serial port. Valid baud rate
values are 1200, 2400, 4800, 9600, 19200, 38400, 57600,
115200. The default baud rate after initialization is 9600.

BytesRead RO Short Returns the number of bytes read from the serial port after
the previous read operation from the port (i.e., using the
SerialData property). After initialization of the port, or after a
failed read from the port, a value of zero (0) is returned.

FlowControl R/W Apn_SerialFlowControl Returns/Sets the flow control specified for the port. Valid
values are listed below. The default value for this variable
after initialization of the port is Apn_SerialFlowControl_Off.

 -1 (Apn_SerialFlowControl_Unknown): The flow control state
of the port cannot be determined. Almost always implies a
communication failure with the camera system. This value
cannot be written; it only results from a failed flow control
read.

 0x0 (Apn_SerialFlowControl_Off): The port does not/should
not use flow control.

 0x1 (Apn_SerialFlowControl_On): The port does/should use
flow control.

Parity R/W Apn_SerialParity Returns/Sets the parity specified for the port. Valid values
are listed below. The default value for this variable after
initialization is Apn_SerialParity_None.

 -1 (Apn_SerialParity_Unknown): The parity state of the port
cannot be determined. Almost always implies a
commununication failure with the camera system. This value
cannot be written; it only results from a failed parity read.

 0x0 (Apn_SerialParity_None): The port does not/should not
use parity.

 0x1 (Apn_SerialParity_Odd): The port does/should use odd
parity.

 0x2 (Apn_SerialParity_Even): The port does/should use
even parity.

SerialData R/W String Returns/Sets a character string of data from/to the serial port.

 Apogee Instruments Software Specification

48

12 Sequences

12.1 Overview

The camera systems provide the capability to capture internal sequences of images. An internal
sequence is defined as two or more images captured by the camera, using a single Expose call. In other
words, the ImageCount property must be greater than or equal to two.

Sequences of images are useful when an application knows the user would like to require a certain
number of images in advance, and the application also wants to strictly minimize the delay between
successive images. For application and programming simplicity, Apogee Instruments only recommends
using sequences when both of these conditions must be met. When the camera’s internal sequencing
engine is used, all imaging parameters, including exposure time, must be kept the same.

There are two types of sequencing operations possible. The first type is called a ―Bulk Sequence‖. A
bulk sequence is defined as a sequence of images that are all placed into local memory before being
downloaded in one block by the calling application. In this mode, the application is responsible for
allocating memory for the entire sequence of images (as if concatenated together), and then must
separate each image after downloading. The second type is called a ―Streaming Sequence‖. In this type
of sequence, the camera system starts the series of images with a single Expose command. However,
the calling application checks the camera status regularly to determine when the next image will be ready
for download.

Applications should take care to ensure that data is paced back to the user’s computer regularly (for
streaming sequences), otherwise the application should make sure that the series of images will not
overflow the camera’s local memory buffer. If the local memory buffer is filled, the camera will stop
digitization of subsequent images until there is room in the buffer. Note, however, that an application
should have little problem in streaming data back to the user’s computer and staying ahead of the internal
digitization process. This warning is mainly provided for specific types of use and applications where, for
whatever reason, the calling software is not able to download image data for an extended period of time.

Ethernet camera systems may only use the bulk sequence operation.

12.2 Bulk Sequence Control and Usage

The following is meant to provide a simple example of bulk sequences using C++. As previously
discussed, a bulk sequence is defined as a sequence of images that are all placed into local memory
before being downloaded in one block by the calling application. In this mode, the application is
responsible for allocating memory for the entire sequence of images (as if concatenated together), and
then must separate each image after downloading. The example code demonstrates how to set up a bulk
sequence, divides the sequence data into separate frames, and saves each frame as a separate file to
disk.

// Query user for number of images in the sequence

printf("Number of images in the sequence: ");

scanf("%d", &NumImages);

printf("Preparing sequence of %d images.\n", NumImages);

// Set the image count

ApogeeCamera->ImageCount = NumImages;

 Apogee Instruments Software Specification

49

// Query the camera for a full frame image

long ImgXSize = ApogeeCamera->ImagingColumns;

long ImgYSize = ApogeeCamera->ImagingRows;

// Set sequence download variable

ApogeeCamera->SequenceBulkDownload = true;

// Variables for the image buffer and another for iterating through the

buffer

unsigned short* pBuffer;

unsigned short* pBufferIterator;

// Allocate memory and calculate a byte count. For bulk

// sequences, the buffer should be sized to include all images

pBuffer = new unsigned short[ImgXSize * ImgYSize * NumImages];

ImgSizeBytes = ImgXSize * ImgYSize * 2;

// Do a 0.001s dark frame (bias)

printf("Starting camera exposure...\n");

ApogeeCamera->Expose(0.001, false);

// Check camera status to make sure image data is ready

while (ApogeeCamera->ImagingStatus != Apn_Status_ImageReady);

// Get the image data from the camera

printf("Retrieving image data from camera...\n");

ApogeeCamera->GetImage((long)pBuffer);

pBufferIterator = pBuffer;

// Write the test images to different output file (overwrite if it already

exists)

// In this process, we are dividing the single image buffer into the separate

// images that comprise the bulk data set.

for (i=1; i<=NumImages; i++)

{

 sprintf(szFilename, "BulkImage%d.raw", i);

 filePtr = fopen(szFilename, "wb");

 if (filePtr == NULL)

 {

 printf("ERROR: Failed to open file for writing output data.");

 }

 else

 {

 printf("Wrote image to output file \"%s...\"\n", szFilename);

 fwrite(pBufferIterator, sizeof(unsigned short),

(ImgSizeBytes/2), filePtr);

 fclose(filePtr);

 if (i < NumImages)

 {

 // Only change the pointer for the first n-1 images

 pBufferIterator += (ImgSizeBytes/2);

 Apogee Instruments Software Specification

50

 }

 }

}

12.3 Streaming Sequence Control and Usage

The following is meant to provide a simple example of streaming sequences using C++. As previously
discussed, a streaming sequence is defined as a sequence of images that are continuously sent back to
the application while other images in the sequence are still being exposed. Applications do not normally
need to worry about keeping up with the sequence, as images can be buffered into the camera’s local
memory before being downloaded by the application. In this mode, the application is responsible for
allocating memory for at least one image, and then downloading the series of images. The example code
demonstrates how to set up a streaming sequence, and saves each downloaded frame as a separate file
to disk.

// Query user for number of images in the sequence

printf("Number of images in the sequence: ");

scanf("%d", &NumImages);

printf("Preparing sequence of %d images.\n", NumImages);

// Set the image count

ApogeeCamera->ImageCount = NumImages;

// Query the camera for a full frame image

long ImgXSize = ApogeeCamera->ImagingColumns;

long ImgYSize = ApogeeCamera->ImagingRows;

// Toggle the sequence download variable

ApogeeCamera->SequenceBulkDownload = false;

// Variable for the image buffer

unsigned short* pBuffer;

// Create a buffer for one image, which will be reused for

// each image in the sequence

pBuffer = new unsigned short[ImgXSize * ImgYSize];

ImgSizeBytes = ImgXSize * ImgYSize * 2;

// Do a sequence of 0.001s dark frames (bias frames)

printf("Starting camera exposure...\n");

ApogeeCamera->Expose(0.001, false);

for (i=1; i<=NumImages; i++)

{

 while (ApogeeCamera->SequenceCounter != i)

 {

 // printf("Waiting for ApogeeCamera->SequenceCounter to

increment\n");

 }

 // Get the image data from the camera

 printf("Retrieving image data from camera (Image #%d)...\n",

ApogeeCamera->SequenceCounter);

 ApogeeCamera->GetImage((long)pBuffer);

 Apogee Instruments Software Specification

51

 sprintf(szFilename, "StreamedImage%d.raw", i);

 filePtr = fopen(szFilename, "wb");

 if (filePtr == NULL)

 {

 printf("ERROR: Failed to open file for writing output data.");

 }

 else

 {

 printf("Wrote image data to output file \"%s...\"\n", szFilename

);

 fwrite(pBuffer, sizeof(unsigned short), (ImgSizeBytes/2),

filePtr);

 fclose(filePtr);

 }

}

 Apogee Instruments Software Specification

52

13 Continuous Imaging

13.1 Overview

Continuous Imaging is a special form of the camera’s internal sequencing engine. When using this type
of internal sequencing, the camera may be set up so that it does not simply capture a specific number of
frames with one Expose call. Rather, the camera will continuously take one image after another until a
StopExposure command is issued. This type of operation may only be used as a form of streaming
sequences.

Sequences of images are useful when an application constantly wants to cycle frames through the
camera system, and the application also wants to strictly minimize the delay between successive images.
For application and programming simplicity, Apogee Instruments only recommends using continuous
imaging when both of these conditions must be met. When the camera’s internal sequencing engine is
used, all imaging parameters, including exposure time, must be kept the same. Continuous imaging is a
specific mode, requiring the application to regularly request and track the data stream from the camera.
Some applications may find less complexity in simply constructing a loop that takes single frames one at
a time until told to exit the loop.

Ethernet camera systems cannot perform streaming sequences, and therefore cannot use the continuous
imaging feature.

Continuous imaging is only available when the camera mode is Apn_CameraMode_Normal.

13.2 Control and Usage

Continuous imaging requires some extra overhead on the part of the calling application. Once an
application begins the continuous imaging process with an Expose call, the application must continuously
check for the next image frame to be downloaded. The application must provide itself some process to
send the camera a StopExposure command when requested.

Frames will be buffered in the camera’s internal memory if the application does not request them fast
enough. There is no provision for skipping frames in the memory buffer. The internal camera firmware
manages the local memory buffer as a circular buffer, so the application should generally make sure to
keep up on the number of frames available for download. However, the local memory within the device
should be enough storage to handle the frames. Applications will also need to manage the rolling value
of the SequenceCounter property which rolls over after counting from 1 to 65535.

Because control of continuous imaging requires event based processing, or a multithreaded application, a
concise sample is not presented here. But the usage is straightforward:

1. Enable the ContinuousImaging property
2. Call the Expose method
3. Loop as if doing an infinite streaming sequence, looking at the SequenceCounter property before

requesting data
4. Issue GetImage calls when the data is ready
5. Return to the loop processing until a StopExposure command is requested by the user

 Apogee Instruments Software Specification

53

14 Hardware Triggering

14.1 Overview

The Alta and Ascent camera systems allow for the use of an external, hardware trigger/signal to begin an
exposure. The trigger signal arrives through the camera I/O port—the pins and use of which are defined
in another section of this document. This section provides additional detail on the properties for enabling
or disabling different types of exposure triggers.

Previous versions of the driver and firmware used the CameraMode property to control hardware
triggering, by setting this property to either Apn_CameraMode_ExternalShutter or
Apn_CameraMode_ExternalTrigger. Trigger operations are now controlled by properties that are set
when using the camera in a specific mode. The following short table shows the trigger properties and the
corresponding camera modes for which they are valid.

Property Normal TDI Kinetics

ExternalShutter Yes No No

ExternalIoReadout Yes No No

TriggerNormalEach Yes No No

TriggerNormalGroup Yes No No

TriggerTdiKineticsEach No Yes Yes

TriggerTdiKineticsGroup No Yes Yes

The ExternalShutter property is straightforward. When used, this signal (which is assigned a different I/O
pin than the usual trigger start signal) controls the length of the exposure. It may be used in conjunction
with the ExternalIoReadout property, to control when digitization begins. These two properties are
designed to be used with single exposures.

The Each/Group trigger properties are designed to give the greatest flexibility and number of options to
users, for each corresponding camera mode.

14.2 Normal Mode Triggers

The following chart details how the Each/Group properties are interpreted in Apn_CameraMode_Normal,
when ImageCount equals one (single exposure) and when ImageCount is greater than one (using the
camera’s internal sequence engine).

 ImageCount = 1 ImageCount > 1

TriggerNormalEach = FALSE
TriggerNormalGroup = FALSE

Software initiated single
exposure. No hardware trigger
enabled.

Software initiated sequenced
exposure. No hardware trigger
enabled.

TriggerNormalEach = FALSE
TriggerNormalGroup = TRUE

Hardware trigger is used to begin
the single exposure.

Hardware trigger is used to begin
the sequenced exposure. One
trigger kicks off the entire series of
images.

 Apogee Instruments Software Specification

54

TriggerNormalEach = TRUE
TriggerNormalGroup = FALSE

Not a valid/usable option, and will
have no impact. Because
ImageCount is one, the camera
control firmware should ignore
the Each setting.

The first image of the sequence is
begun by software control. Each
subsequent image in the
sequence will be initiated when its
corresponding hardware trigger
arrives.

TriggerNormalEach = TRUE
TriggerNormalGroup = TRUE

Hardware trigger is used to begin
the single exposure. Because
ImageCount is one, the camera
control firmware should ignore
the Each setting.

The first image, as well as all
subsequent images, of the
sequence will be initiated by a
corresponding hardware trigger.

14.3 TDI Triggers

The following chart details how the Each/Group properties are interpreted in Apn_CameraMode_TDI.
TDI operation presumes multiple rows, and, in effect, is very similar to a sequence of normal images.

TriggerTdiKineticsEach = FALSE
TriggerTdiKineticsGroup = FALSE

Software initiated TDI image. No hardware trigger enabled.

TriggerTdiKineticsEach = FALSE
TriggerTdiKineticsGroup = TRUE

A single hardware trigger is used to begin the entire TDI image.

TriggerTdiKineticsEach = TRUE
TriggerTdiKineticsGroup = FALSE

The first row of the TDI image is begun by software control. Each
subsequent row in the TDI image will be initiated when its
corresponding hardware trigger arrives.

TriggerTdiKineticsEach = TRUE
TriggerTdiKineticsGroup = TRUE

The first row, as well as all subsequent rows, of the TDI image will
be initiated by a corresponding hardware trigger.

14.4 Kinetics Triggers

The following chart details how the Each/Group properties are interpreted in Apn_CameraMode_Kinetics.

TriggerTdiKineticsEach = FALSE
TriggerTdiKineticsGroup = FALSE

Software initiated Kinetics image. No hardware trigger enabled.

TriggerTdiKineticsEach = FALSE
TriggerTdiKineticsGroup = TRUE

A single hardware trigger is used to begin the entire Kinetics
imaging process.

TriggerTdiKineticsEach = TRUE
TriggerTdiKineticsGroup = FALSE

The first row of the TDI image is begun by software control. Each
subsequent row in the TDI image will be initiated when its
corresponding hardware trigger arrives.

TriggerTdiKineticsEach = TRUE
TriggerTdiKineticsGroup = TRUE

The first row, as well as all subsequent rows, of the TDI image will
be initiated by a corresponding hardware trigger.

 Apogee Instruments Software Specification

55

14.5 Control and Usage

The following chart details how the Each/Group properties are interpreted in Apn_CameraMode_Kinetics.

///

// Single Hardware Trigger Example

///

// First we'll do a single triggered exposure. This requires the

// "TriggerNormalGroup" property to be enabled

ApogeeCamera->TriggerNormalGroup = true;

// We will make our exposure a 0.1s light frame. Even though this

// is a triggered exposure, we still need the Expose() method to be

// called to set up our exposure

printf("Starting a single triggered exposure of 0.1s...\n");

ApogeeCamera->Expose(0.1, true);

// Tell the user something informative...

printf("Waiting on trigger...\n");

// Check camera status to make sure image data is ready

while (ApogeeCamera->ImagingStatus != Apn_Status_ImageReady);

// Get the image data from the camera

printf("Retrieving image data from camera...\n");

ApogeeCamera->GetImage((long)pBuffer);

// We're going to set this to "true" again in the next example, but

// for good form, we'll return our state to non-triggered images

ApogeeCamera->TriggerNormalGroup = false;

///

// Sequenced (Internal) Hardware Trigger Example

///

// NOTE: The following example uses the camera engine's internal

// capability to do sequences of images. An application could

// also easily do a loop of single triggered images in order to

// achieve the same result, but driven by software/the application.

// Do a sequence of triggered exposures. This requires both the

// "TriggerNormalGroup" and "TriggerNormalEach" properties to be

// enabled. TriggerNormalGroup will enable a trigger for the first

// image. TriggerNormalEach will enable a trigger for each

// subsequent image in the sequence.

ApogeeCamera->TriggerNormalGroup = true;

ApogeeCamera->TriggerNormalEach = true;

// Toggle the sequence download variable

ApogeeCamera->SequenceBulkDownload = false;

// Set the image count

 Apogee Instruments Software Specification

56

NumImages = 5;

// Set the image count

ApogeeCamera->ImageCount = NumImages;

// For visual clarification, enable an LED light to see when the camera is

// waiting on a trigger to arrive. Enable the other LED to see when the

// camera is flushing.

ApogeeCamera->LedMode = Apn_LedMode_EnableAll;

ApogeeCamera->LedA = Apn_LedState_ExtTriggerWaiting;

ApogeeCamera->LedB = Apn_LedState_Flushing;

// As with single exposures, we must start the trigger process with the

// Expose method. We only need to call Expose once to kick off the entire

// sequence process.

ApogeeCamera->Expose(0.1, true);

for (i=1; i<=NumImages; i++)

{

 printf("Waiting on trigger for image #%d...\n", i);

 // For sequences of images, the correct usage is to use the

 // SequenceCounter property in order to correctly determine when

 // an image is ready for download.

 while (ApogeeCamera->SequenceCounter != i);

 // Get the image data from the camera

 printf("Retrieving image data from camera (Image #%d)...\n", i);

 ApogeeCamera->GetImage((long)pBuffer);

}

// Return our state to non-triggered images

ApogeeCamera->TriggerNormalGroup = false;

ApogeeCamera->TriggerNormalEach = false;

// Reset our image count to 1

ApogeeCamera->ImageCount = 1;

 Apogee Instruments Software Specification

57

15 Time Delayed Integration (TDI) Mode

15.1 Overview

Time Delayed Integration (TDI) Mode is a special mode of camera operation used to create single images
that are larger than the sensor area of the CCD itself. The camera is programmed to read out and digitize
each row at a particular rate, up to some number of pre-programmed rows. The following diagram
illustrates the process:

Because of their unique operation, interline sensors cannot use TDI mode.

15.2 Control and Usage

To control the camera in TDI mode, an application should set the CameraMode variable to
Apn_CameraMode_TDI. The TDIRate property is used to control the rate at which rows are digitized in
the camera. The TDIRows variable is the total number of rows in the final TDI image. The Expose
method is used for beginning the TDI process, but note that the Duration parameter is not used.
Applications should consider TDI to be a type of sequence, with the corresponding option to download the
image data in bulk or streaming formats. For streaming downloads, software should use the TDICounter
property to determine when a new row is ready to be retrieved by the calling application. When
performing a bulk download of the image data, the application should treat the TDI image as a single
image that will be ready for download based on the Apn_Status_ImageReady flag.

TDI may be used in conjunction with hardware triggering.

TDI Operation

Final

Image

CCD

The sensor is read out row

by row, at a rate given by

TDIRate. Instead of

digitization stopping after

the entire sensor is read out

(as with a normal image),

The process continues until

the row count specified by

TDIRows is read out.

The resulting image file is equal

to the width of original image

parameters, but with a height equal

to TDIRows. Depending on the

application, some software may

choose to display this final image

horizontally to the end user (i.e.,

in astronomy).

TDI Operation

Final

Image

CCD

The sensor is read out row

by row, at a rate given by

TDIRate. Instead of

digitization stopping after

the entire sensor is read out

(as with a normal image),

The process continues until

the row count specified by

TDIRows is read out.

The resulting image file is equal

to the width of original image

parameters, but with a height equal

to TDIRows. Depending on the

application, some software may

choose to display this final image

horizontally to the end user (i.e.,

in astronomy).

 Apogee Instruments Software Specification

58

The following C++ code shows the basic operation of TDI as a streaming sequence:

// Set the TDI row count

NumTdiRows = 3000;

ApogeeCamera->TDIRows = NumTdiRows;

// Set the TDI rate

ApogeeCamera->TDIRate = 0.3;

// Toggle the camera mode for TDI

ApogeeCamera->CameraMode = Apn_CameraMode_TDI;

// Toggle the sequence download variable

ApogeeCamera->SequenceBulkDownload = false;

// Set the image size

// The height is 1 since SequenceBulkDownload is false

long ImgXSize = ApogeeCamera->ImagingColumns;

long ImgYSize = 1;

// Create a buffer for one line of data

pBuffer = new unsigned short[ImgXSize * ImgYSize];

// Start the exposure

ApogeeCamera->Expose(0.001, true);

// Get the row data from the camera

for (i=1; i<=NumTdiRows; i++)

{

 // wait for next TDI row

 while (ApogeeCamera->TDICounter != i);

 // Get the line data from the camera

 ApogeeCamera->GetImage((long)pBuffer);

 // Do something with the row of data just downloaded

}

 Apogee Instruments Software Specification

59

16 Kinetics Mode

16.1 Overview

Kinetics Mode is a special mode of camera operation used to take extremely fast, successive images of
small vertical region of the sensor. In this mode, the user will optically mask off most of the CCD sensor,
allowing for some small portion to be exposed during the course of the experiment. The exposed section
of the sensor is illuminated, and then shifted by some number of rows (a ―section height‖). The sensor is
then exposed again to light, and then shifted repeatedly, until the user has exposed the entire surface of
the CCD sensor. One the appropriate number of ―sections‖ are exposed, the sensor is read out and the
data is digitized. The following diagram illustrates this process:

Because of their unique operation, interline sensors cannot use Kinetics mode.

 Apogee Instruments Software Specification

60

16.2 Control and Usage

To control the camera in Kinetics Mode, an application should set the CameraMode variable to
Apn_CameraMode_Kinetics. Each section of a Kinetics mode image has a specified vertical height,
defined by the value of KineticsSectionHeight. The KineticsShiftInterval property is used to control the
rate at which each section is shifted in the camera. The KineticsSections variable is the total number of
sections in the final image. The Expose method is used for beginning the Kinetics process, but note that
the Duration parameter is not used. From the standpoint of the application, a Kinetics image is a single
image, and applications should query the Apn_Status_ImageReady flag.

Kinetics Mode may be used in conjunction with hardware triggering. However, when using hardware
triggering with Kinetics Mode, the software should take care to disable other options on the I/O port.

Kinetics Mode may be used with the camera’s internal sequencing capabilities.

The following C++ code shows the basic operation of Kinetics Mode:

// Set the camera mode to Kinetics

ApogeeCamera->CameraMode = Apn_CameraMode_Kinetics;

// 4 sections

NumSections = 4;

// Set our section variables

ApogeeCamera->KineticsSections = NumSections;

ApogeeCamera->KineticsSectionHeight = ImgYSize / NumSections;

// Set the section rate...using 0.2s arbitrarily

ApogeeCamera->KineticsShiftInterval = 0.2;

// Begin the exposure process

ApogeeCamera->Expose(0.001, true);

// Check camera status to make sure image data is ready

while (ApogeeCamera->ImagingStatus != Apn_Status_ImageReady);

// Get the image data from the camera

ApogeeCamera->GetImage((long)pBuffer);

// Do something with the image data just downloaded

 Apogee Instruments Software Specification

61

17 Examples

17.1 ICamera2 Using C++

The following is meant to provide a simple example of using the ICamera2 and ICamDiscover objects
within the Microsoft Visual C++ environment. The example code creates the ICamera2 and
ICamDiscover objects, attempts to locate a usable camera, and then takes a dark frame image with a
0.001s duration. The example test image is then retrieved. After this is done, the camera I/O port is
configured so that I/O pins 4 and 5 are set up to be user defined I/O and pin 2 is set up as a shutter
output signal. Finally, all of the created objects are released.

#include <stdio.h>

// Import the type library to create an easy to use wrapper class

#import “Apogee.DLL” no_namespace

void main()

{

 ICamera2Ptr ApogeeCamera; // Camera interface

 ICamDiscoverPtr Discover; // Discovery interface

 HRESULT hr; // Return code

 FILE* filePtr; // File pointer

 CoInitialize(NULL); // Initialize COM library

 // Create the ICamera2 object

 hr = ApogeeCamera.CreateInstance(__uuidof(Camera2));

 if (SUCCEEDED(hr))

 {

 printf("Successfully created the ICamera2 object\n");

 }

 else

 {

 printf("Failed to create the ICamera2 object\n");

 CoUninitialize(); // Close the COM library

 return;

 }

 // Create the ICamDiscover object

 hr = Discover.CreateInstance(__uuidof(CamDiscover));

 if (SUCCEEDED(hr))

 {

 printf("Successfully created the ICamDiscover object\n");

 }

 else

 {

 printf("Failed to create the ICamDiscover object\n");

 ApogeeCamera = NULL; // Release ICamera2 COM object

 CoUninitialize(); // Close the COM library

 return;

 Apogee Instruments Software Specification

62

 }

 // Set the checkboxes to default to searching both USB and

 // ethernet interfaces for all types of Alta/Ascent cameras

 Discover->DlgCheckEthernet = true;

 Discover->DlgCheckUsb = true;

 // Display the dialog box for finding a camera

 Discover->ShowDialog(true);

 // If a camera was not selected, then release objects and exit

 if (!Discover->ValidSelection)

 {

 printf("No valid camera selection made\n");

 Discover = NULL; // Release ICamDiscover COM object

 ApogeeCamera = NULL; // Release ICamera2 COM object

 CoUninitialize(); // Close the COM library

 return;

 }

 // Initialize camera using the ICamDiscover properties

 hr = ApogeeCamera->Init(Discover->SelectedInterface,

 Discover->SelectedCamIdOne,

 Discover->SelectedCamIdTwo,

 0x0);

 if (SUCCEEDED(hr))

 {

 printf("Connection to camera succeeded.\n");

 }

 else

 {

 printf("Failed to connect to camera");

 Discover = NULL; // Release Discover COM object

 ApogeeCamera = NULL; // Release ICamera2 COM object

 CoUninitialize(); // Close the COM library

 return;

 }

 // Query the camera for a full frame image

 long ImgXSize = ApogeeCamera->ImagingColumns;

 long ImgYSize = ApogeeCamera->ImagingRows;

 // Allocate memory

 unsigned short *pBuffer = new unsigned short[ImgXSize * ImgYSize];

 // Calculate counts

 unsigned long ImgSizeBytes = ImgXSize * ImgYSize * 2;

 unsigned long PixelCount = ImgXSize * ImgYSize;

 // Display the camera model

 _bstr_t szCamModel(ApogeeCamera->CameraModel);

 printf("Camera Model: %s\n", (char*)szCamModel);

 // Display the driver version

 _bstr_t szDriverVer(ApogeeCamera->DriverVersion);

 printf("Driver Version: %s\n", (char*)szDriverVer);

 Apogee Instruments Software Specification

63

 // Do a 0.001s dark frame (bias)

 printf("Starting camera exposure...\n");

 ApogeeCamera->Expose(0.001, false);

 // Check camera status to make sure image data is ready

 while (ApogeeCamera->ImagingStatus != Apn_Status_ImageReady);

 // Get the image data from the camera

 printf("Retrieving image data from camera...\n");

 ApogeeCamera->GetImage((long)pBuffer);

 // Write test image to an output file (overwrite if it already exists)

 filePtr = fopen("ImageData.bin", "wb");

 if (filePtr == NULL)

 {

 printf("ERROR: Failed to open file for writing output data.");

 }

 else

 {

 printf("Wrote image data to file \"ImageData.bin...\"\n");

 fwrite(pBuffer, sizeof(unsigned short), PixelCount, filePtr);

 fclose(filePtr);

 }

 // Delete the memory buffer for storing the image

 delete [] pBuffer;

 // Show how to configure the I/O Port registers

 // Default setting is for the I/O Port to be completely user defined.

 // Setting the IoPortAssignment to 0x2 will then select only Pin 2

 // (Bit 1) to be configured for the pre-defined Shutter Output state

 // (note that Bit 0 corresponds to Pin 1)

 ApogeeCamera->IoPortAssignment = 0x2;

 // We want Pins 4 and 5 to be configured as outputs, so this requires

 // us to set Bits 3 and 4 of the IoPortDirection variable (note that

 // Bit 0 corresponds to Pin 1)

 ApogeeCamera->IoPortDirection = 0x18;

 // The I/O Port is now configured for the application to use.

 // Release our allocated objects. Alternatively, we could call the

 // ApogeeCamera->Close() method, but that isn't necessary

 // in C++, as setting the object to NULL will close down the object.

 Discover = NULL; // Release ICamDiscover COM object

 ApogeeCamera = NULL; // Release ICamera2 COM object

 CoUninitialize(); // Close the COM library

}

 Apogee Instruments Software Specification

64

17.2 ICamera2 Using VB.NET

The following is meant to provide a simple example of using the ICamera2 and ICamDiscover objects
within the Microsoft Visual Basic .NET environment. The example code creates the ICamera2 and
ICamDiscover objects, attempts to locate a usable camera, and then takes a dark frame image with a
0.001s duration. The example test image is then retrieved, and written to a file.

Module Module1

 Sub Main()

 Dim FindDlg As APOGEELib.CamDiscover

 Dim ApogeeCamera As APOGEELib.Camera2

 Dim ImageData As Array

 Dim FileNum As Integer

 FindDlg = New APOGEELib.CamDiscover()

 ApogeeCamera = New APOGEELib.Camera2()

 FileNum = FreeFile()

 FindDlg.DlgCheckEthernet = True

 FindDlg.DlgCheckUsb = True

 FindDlg.ShowDialog(True)

 If FindDlg.ValidSelection Then

 ApogeeCamera.Init(FindDlg.SelectedInterface,

FindDlg.SelectedCamIdOne, FindDlg.SelectedCamIdTwo, 0)

 ApogeeCamera.Expose(0.001, False)

 Do

 Loop Until ApogeeCamera.ImagingStatus =

APOGEELib.Apn_Status.Apn_Status_ImageReady

 ImageData = ApogeeCamera.Image

 FileOpen(FileNum, "Image.raw", OpenMode.Binary, OpenAccess.Write)

 FilePut(FileNum, ImageData)

 FileClose(FileNum)

 End If

 End Sub

End Module

 Apogee Instruments Software Specification

65

17.3 ICamera2 Using LabVIEW

The Apogee ActiveX/COM DLL can be used within LabVIEW, a graphical programming environment from
National Instruments. LabVIEW allows the user to control the camera system through the DLL. At this
time, Apogee does not provide an instrument driver for LabVIEW beyond the Apogee ActiveX/COM DLL.

The easiest way to invoke the ActiveX/COM capabilities within LabVIEW is to use LabVIEW as an
Automation Client. In this mode, LabVIEW acts as a client, and requests information from the Apogee
DLL, which is the automation server.

In order to use the Apogee DLL from within LabVIEW, refer to your LabVIEW documentation to create an
Automation Open Reference. This will allow the ActiveX/COM DLL to be opened. The Automation
Reference requires the user to select an ActiveX class in order to operate properly. Choose the option to
―Select ActiveX Class‖ and look at the list of available ActiveX components on the computer. Note that it
is not unusual for many components to be registered. Select the component labeled ―Apogee Camera
Control Library.‖ If the ―Apogee Camera Control Library‖ is not present or shown as an ActiveX Class,
then the Apogee.DLL has not been installed properly. Please see your installation instructions for proper
installation before continuing. Once the reference has been opened, LabVIEW will refer to it in a
shortened form, i.e. APOGEELib.ICamera2. For camera discovery, the name will appear as
APOGEELib.ICamDiscover.

The partial diagram below shows the Automation Open Reference for an ActiveX control, using the
APOGEELib.ICamDiscover object.

Once the Automation Reference has been opened with the Apogee ActiveX camera control, the various
Properties and Methods of the object will be available from the Automation Property Nodes and
Automation Invoke Nodes. These nodes also require an associated ActiveX Class, which should be set
to the ICamera2 or ICamDiscover object. Once this is done, select the appropriate Method or Property to
use, and connect the node to other LabVIEW components as appropriate.

The partial diagram below shows a Property Node (CameraModel).

When finished with the Apogee ActiveX Control, make sure to complete operation with an Automation
Close Reference.

The diagram on the next page is a very simple LabVIEW virtual instrument, which opens an Automation
Reference to control the ICamDiscover interface, and queries the user for a camera selection. The
sample then opens another Automation Reference to the ICamera2 interface, initializes the camera with
the Init method, and then uses the ICamera2 interface to display the camera model, as well as the
number of rows and columns available for imaging.

For more information regarding LabVIEW usage, as well as specifics of how to use LabVIEW as an
Automation Client, please reference the documentation provided by National Instruments.

 Apogee Instruments Software Specification

66

 Apogee Instruments Software Specification

67

17.4 ISerialPort Using C++

The following is meant to provide a simple example of using the ISerialPort object within the Microsoft
Visual C++ environment. The example code creates the object, attempts to locate a usable Alta camera,
and then performs a simple write/read sequence from the port, as well as changing the baud rate. Note
that any delay between a serial port write and a subsequent read is the responsibility of the calling
application to implement, depend on the serial port hardware being used. A Sleep() statement is used in
the example below.

#include <stdio.h>

// Import the type library to create an easy to use wrapper class

#import "apogee.dll" no_namespace

void main()

{

ISerialPortPtr AltaSerialPort; // Camera interface

 ICamDiscoverPtr Discover; // Discovery interface

 HRESULT hr; // Return code

 CoInitialize(NULL); // Initialize COM library

 // Create the ActiveX objects from the universally unique identifier

 hr = AltaSerialPort.CreateInstance(__uuidof(SerialPort));

 if (FAILED(hr))

 {

 printf("Failed to create the ISerialPort object\n");

 return;

 }

 else

 {

 printf("Successfully created the ISerialPort object\n");

 }

 hr = Discover.CreateInstance(__uuidof(CamDiscover));

 if (FAILED(hr))

 {

 printf("Failed to create the ICamDiscover object\n");

 return;

 }

 else

 {

 printf("Successfully created the ICamDiscover object\n");

 }

 Discover->ShowDialog(true);

 if (Discover->ValidSelection)

 {

 hr = AltaSerialPort->OpenPort(Discover->SelectedInterface,

 Discover->SelectedCamIdOne,

 0x0, 0x0);

 }

 Apogee Instruments Software Specification

68

 else

 {

 printf("No Valid Selection made\n");

 return;

 }

 if (FAILED(hr))

 {

 printf("Failed to connect to camera serial port\n");

 }

 else

 {

 printf("Connection Successful.\n");

 _bstr_t WriteBuffer;

 _bstr_t ReadBuffer;

 BSTR TempReadBuffer;

 short ReadCount;

 ULONG BaudRate;

 WriteBuffer = ":GB#";

 AltaSerialPort->SerialData = WriteBuffer.copy();

 printf("Buffer written to port: %s\n", (char*)WriteBuffer);

 Sleep(200);

 ReadBuffer = _bstr_t(AltaSerialPort->SerialData);

 printf("Buffer read from port: %s\n", (char*)ReadBuffer);

 printf("Buffer length: %u\n", AltaSerialPort->BytesRead);

 // Baud rate test

 BaudRate = AltaSerialPort->BaudRate;

 printf("Baud Rate: %u\n", BaudRate);

 AltaSerialPort->BaudRate = 19200;

 BaudRate = AltaSerialPort->BaudRate;

 printf("Baud Rate: %u\n", BaudRate);

 hr = AltaSerialPort->ClosePort();

 if (FAILED(hr))

 {

 printf("Failed to close the serial port\n");

 }

 else

 {

 printf("Serial port connection closed\n");

 }

 }

 Discover = NULL; // Release the objects

 AltaSerialPort = NULL;

 CoUninitialize(); // Close the COM library

}

 Apogee Instruments Software Specification

69

18 Application Notes

The following notes comprise a short Frequently Asked Questions (FAQ) that Apogee Instruments has
received by various developers over time. These notes should help explain some of the more common
problems and questions encountered during application development.

18.1 Detecting USB Device Removal

The Apogee Alta and Ascent USB cameras are, like all USB devices, Plug and Play compatible. This
means they may be removed or added from the system by simply connecting or disconnecting the USB
device cable and/or the power cable to the camera. If an application is open while the camera is
disconnected, further commands will obviously fail. Therefore, a provision is made for applications which
poll the camera for status information, to learn that an error occurred while the application was attempting
to communicate with the camera system.

In the case where a camera control application is running, and power is removed from the Alta or Ascent
camera…on the next operation requested of the camera, the Apogee.DLL will internally monitor for a
failed operation (if power is removed, the operation will certainly fail). If the Apogee.DLL detects a failure,
it will immediately attempt to reconnect to the camera and retry the operation. If that reconnect/retry
sequence fails, the DLL will not allow further access to the hardware until another successful Init
operation has been performed. Any query to the ImagingStatus property will return
Apn_Status_ConnectionError.

Camera control applications should periodically poll the camera to monitor status (see section on
―Application Polling and Camera Status‖) and process the Apn_Status_ConnectionError. On detection of
this error, the camera object should be closed using either the Close method or delete the object entirely.
The application should inform the user of the connection error, and offer the user some means to
reconnect to the camera when the Alta or Ascent camera is reconnected to the computer.

Applications which need additional detail about device removal should process the
WM_DEVICECHANGE message, issued by Microsoft Windows Operating Systems to Plug and Play
events such as USB device removal and addition. Application writers should consult the Microsoft
documentation on processing this message, according to the particular programming language they are
using.

18.2 Application Polling and Camera Status

Applications will want to periodically query the camera system to retrieve current status and temperature
information. This allows an application to detect internal camera events such as when image data is
ready to be downloaded, updates on temperature and cooler drive level, and also any particular error
messages such as an Apn_Status_ConnectionError when a USB camera is disconnected while an
application is still running.

The interval at which applications poll the camera for this type of status information is dependent on the
frequency of desired updates. However, some care should be taken by applications which communicate
with Ethernet camera systems, so that they do not saturate the camera with status requests, as network
latency is far, far greater than the latency associated with a USB 2.0 connection.

For normal camera operation regarding status queries, Apogee Instruments recommends a polling
frequency of not more than once per second for Ethernet systems, and not more than once per quarter
second for USB systems. It is possible to poll more frequently, but, in the case of Ethernet systems, the

 Apogee Instruments Software Specification

70

added network traffic may affect other camera operations such as displaying the Alta Ethernet camera
web page. In the case of USB systems, higher polling rates are possible, but of limited value for nominal
status queries of the system.

Some applications may wish to increase their polling frequency when checking the ImagingStatus
property before issuing a call to the GetImage method. Applications should use whatever polling rate
they feel is appropriate for their particular software architecture. If the application will use a frequent
polling rate prior to issuing the GetImage call, Apogee Instruments recommends that, when taking long
(multiple second) exposures, the application polls at a slower rate (i.e., perhaps once per second) until
the exposure time remaining is less than roughly two seconds.

18.3 Retrieving Image Data

Prior to retrieving image data from the camera system, applications should query the ImagingStatus
property to determine if the image data is ready to be downloaded. This is done by monitoring for a
status of Apn_Status_ImageReady. Depending on the length of the exposure, the image data may not be
available for download immediately. In this case, applications should not block while waiting for the
status to change. Rather, applications should poll at some occasional frequency, so that the user’s
computer is still responsive and usable.

It is important to note that an application should only checking whether the conditional statement, is
ImagingStatus equal to Apn_Status_ImageReady, is true. If an application attempts to check a broader
range, such as greater than (less than) or equal to Apn_Status_ImageReady, it is possible that the
application will request image data at the wrong time.

18.4 Camera State Persistence

Application writers should note that the Apogee.DLL driver does not maintain any permanent state
information once an object has been closed or destroyed. Persistence of camera properties is the
responsibility of the application.

18.5 Image Data and Pixel Format

The image data returned by the Apogee ActiveX/COM DLL is in a specific, consistent format. Image data
is returned as unsigned, 16bit data. Saturation of a pixel is defined (in 16bit digitization mode) as a pixel
value at or near (depending on the gain of the camera) 65535 counts. Cameras which support 12bit
digitization of the sensor also return data in 16bit format; however, these cameras always have the upper
four bits of each pixel as zero.

The first element of the image data returned to the application is the top left corner of the Region of
Interest (ROI). The second element is the next pixel in the same row as the first element (i.e.,
immediately to the right of the first element). The rest of the first row follows, followed by the second row,
and successively proceeding through the entire ROI.

18.6 Life Cycle of an Image

Every image acquired by the camera has a sort of life cycle associated with it. An image begins with a
call to the Expose method. It ends with a call to either the StopExposure to GetImage method. An
application must follow this rule for proper camera operation. In addition, an application should not call

 Apogee Instruments Software Specification

71

Expose multiple times and then follow it with multiple GetImage calls. For example, the following is
incorrect usage of the camera (showing only Expose and GetImage calls), and will not work:

Expose (Image 1)
Expose (Image 2)
GetImage (Image 1)
GetImage (Image 2)

Rather, the correct series of commands should be:

Expose (Image 1)
GetImage (Image 1)
Expose (Image 2)
GetImage (Image 2)

If an application wishes to do fast back to back exposures, then the software should use the camera’s
internal sequencing operations. Note that internal sequencing still begins the image acquisition process
with a single call to Expose, but in that case, multiple GetImage calls are allowed (see that section of this
document for additional information on correct usage of image sequences).

18.7 Correct Geometry when Binning

The pixel count values in the region of interest, RoiPixelsH and RoiPixelsV, are in terms of binned pixels.
Therefore, when an application changes the horizontal or vertical binning (RoiBinningH and RoiBinningV),
it must also change the pixel count (RoiPixelsH and RoiPixelsV) in the region of interest. Failing to set
these parameters correctly may result in a condition where the camera’s internal engine is set up to wait
for a greater number of pixels than specified (for example, if the binning is set for 2x2, but the ROI
parameters for width and height are not adjusted, the camera engine will be expecting approximately 4x
the number of pixels it will receive during readout).

This behavior is by design. Because the camera allows subframing, the driver cannot correctly and
automatically determine the pixel count based on only the binning parameters.

18.8 CameraMode and the Expose() Method

Application developers should keep in mind that regardless of the CameraMode setting, or other options
enabled or disabled by various properties, the Expose method always acts as the official software starting
point of taking an image. The Expose method is responsible for all final setup of the camera’s internal
state machine, and so must be called prior to any sort of image acquisition (ie, single exposures,
triggered operations, sequences of images, etc.).

18.9 Avoiding the Use of ICamDiscover

Some application developers wish to avoid the use of discovering which cameras are connected to the
system. For example, the developer may know in advance that their particular system or application will
only ever have a single camera attached. In this case, the application may find it useful to simply call the
Init method with the correct parameters, such as (in C++ code):

Init(Apn_Interface_USB, 0, 0x0, 0x0);

 Apogee Instruments Software Specification

72

This code will attempt to issue an Init call to the first USB camera enumerated on the user’s system. This
could also be used by ethernet camera systems (by modifying the appropriate fields), but such a scheme
should only be used if the camera has been assigned a static IP address on the network, such that the
assigned address remains the same over time.

18.10 TDI and Kinetics Mode and Interline Sensors

Because of their unique type of operation, interline sensors cannot be used with either TDI or Kinetics
Mode.

18.11 Multithreaded applications

Some developers, for various reasons, write their applications using multiple threads. Generally
speaking, we do not recommend this approach for most application developers, as the perceived
performance gain is rarely worth the added development complexity and maintenance required by
multithreaded software. Instead, we recommend developers using an event-type model, where requests
to the camera driver are queued and passed along sequentially.

For developers that determine a multithreaded application is the right approach for the software they need
to develop, the application should insure that commands sent to the camera do not interfere with one
another. For example, if an application issues a GetImage call, the software should make sure that call
returns before issues additional property or method requests to the camera. For example, suppose an
application puts status and temperature reads in one thread, and other camera control operations in
another thread. In that case, a GetImage call could be followed immediately by an interleaved
temperature read request that is issued by the other thread, but before GetImage completes.
Applications should take care to insure this does not happen. In general, the application should make
sure that each camera request is sent serially, and completes/returns, before issuing another request to
the camera.

